
LizardTech

MrSID Decode SDK 9.5
for Raster

User Manual

Copyright © 2009–2015 Celartem, Inc., doing business as LizardTech. All rights reserved.
Information in this document is subject to change without notice. The software described in this
document is furnished under a license agreement or nondisclosure agreement. The softwaremay be
used or copied only in accordance with the terms of those agreements. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or any means electronic or
mechanical, including photocopying and recording for any purpose other than the purchaser's
personal use without the written permission of LizardTech.

LizardTech, MrSID, GeoExpress and Express Server are registered trademarks in the United States
and the LizardTech, GeoExpress, Express Server, ExpressView andGeoViewer logos are
trademarks, and all are the property of Celartem, Inc., doing business as LizardTech. Unauthorized
use is prohibited.

LizardTech acknowledges and thanks themany individuals and organizations whose efforts have
made our products possible. A full list of copyright, trademark and credit information is available in the
document "Copyrights, Trademarks and Credits" installed automatically with your product.

LizardTech
1008Western Avenue, Suite 403
Seattle, Washington, USA 98104
206-652-5211
www.lizardtech.com

- ii -

http://www.lizardtech.com/

Table of Contents

Introduction 1
Features 2
How to Read this Manual 3
SDK Contents 3

Getting Started 5
System Requirements 5
Installation 7
Example Code 7
Technical Support 8

Architecture and Design 11
Pipeline Design 11
Strip-Based Decoding 13
Scenes 14
Multi-Threading 17
Other Design Considerations 18

The Support Classes 19
Preprocessor Constants and Basic Typedefs 19
Status Strings 19
The LTIFileSpec Class 19
Streams 20

The SDK Base Classes 21
Base Enums 21
Base Classes 21
The Image Classes 22
The Raw Readers and Writers 23
Scene and Buffer Management 23

Concrete Image Filters and Writers 25
Image Filters 25
Image Writers 26

MrSID Support 27
MG2, MG3 and MG4 27
Key Features of MrSID 28
MrSID Readers 33

JPEG 2000 Support 35
The JPEG 2000 Reader 35

- iii -

NITF Support 37
The NITF Reader 37
NITF Input Metadata 38

Metadata Support 43
The Metadata Record 43
The Metadata Database 44
The Tags 44

The C API 45
Image Support 45
Decode Support 46
Metadata Support 46
Streams 46

Command Line Applications 47
Switches Common to All Tools 47
mrsidinfo 47
mrsiddecode 49
mrsidviewer 55

Appendix A - Technical Notes 57
Zoom Levels 57
Coding Conventions 59
Overrides 62
Reference Counting 64
Notes on Streams 65
Notes on World Files 67
Notes on BBB Files 68
GeoTIFF Metadata for JPEG 2000 75
Georeferencing of NITF Imagery 81
Metadata Tags 84
Negative y-Resolutions 89
Nodata and Background Pixels 90

Appendix B - Company and Product Information 93
About LizardTech 93
Other LizardTech Products 93

Glossary 95
Index 103

- iv -

Introduction
Welcome to theMrSID® Software Development Kit (SDK) for raster imagery. This is the
documentation for the Decode version (DSDK).

Digital images have become important to every aspect of business, industry, and government.
Because of the enormous amounts of data involved, the use of high-quality images has been hindered
by storage and bandwidth constraints. LizardTech's technologies and products solve these problems
and lay the foundation for truly dynamic image access.

Used as the foundation for LizardTech’s other geospatial products including GeoExpress,
ExpressServer, ExpressView Browser Plug-in and other applications, theMrSID SDK is a robust
toolkit suitable for complex application development needs.

The SDK provides a framework for creating image pipelines that enable developers to efficiently read,
write andmanipulate data in a variety of formats, includingMrSID, JPEG 2000, and other common
geospatial raster formats.

NOTE: The Decode SDK does not support writing .sid and .jp2 images. For information about this
kind of support, contact your regional LizardTech office.

TheMrSID format supports LiDAR data as well as raster data, but a separate set of tools and libraries
is used in supporting LiDAR data in theMrSID format. Separate documentation is available in your
installation for integrating support for LiDAR-encodedMrSID files.

Your installation also includes a copy of the End User License Agreement (EULA) and a README
file.

MrSID

MrSID’s unique file format enhances the workflow of image data by compressing high-resolution
images to a fraction of their original file size while maintaining image quality. BecauseMrSID images
are scalable, you can reduce, enlarge, zoom, pan, or print without compromising integrity. And with
the selective decoding capability of MrSID technology, you can view any region of an image at
different resolutions. Separate encoding, optimizing, and decoding capabilities give you the flexibility
you need to create and deliver imagery to users with different bandwidth or storage resources.

MrSID has been amainstay of the geospatial community for many years, and support for MrSID
imagery has been implemented in hundreds of applications using theMrSID SDK.

The latest version of MrSID, MrSID Generation 4 (MG4), supports the decoding of selected bands,
which is critical if your application is being used to view multispectral imagery. Most users of multi-
and hyperspectral data don't wish to view all bands from an image at once, so providing them with the
means of selecting bands will save your application decoding time and provide users with a better
user experience.

JPEG 2000

The JPEG 2000 image compression standard offers many of the same advantages as MrSID, plus
the added benefits of being an international standard (ISO/IEC 15444). TheMrSID SDK allows your

- 1 -

http://www.lizardtech.com/purchase/other.php

MrSID Decode SDK9.5 for Raster – User Manual

applications to use JPEG 2000 compression on geospatial images with the same level of efficiency,
metadata, and large-image support already available with MrSID.

Features
TheMrSID SDK is a toolkit for software developers. It is written in C++ to provide an object-oriented
framework for working with images usingMrSID and JPEG 2000 technology.

Themajor features of theMrSID SDK include:

Architecture

The SDK uses a classical image-pipeline design, providing a single, unifiedmodel for reading,
writing, and transforming image data. Developers can easily use existing components or derive
their own for additional functionality.

Classes

A set of basic classes for working with geospatial imagery are provided, including representation
of decode scene extents, memory buffers for image data, pixel data, metadata, etc.

MrSID support

The SDK provides full support for MrSID Generation 2 (MG2), MrSID Generation 3 (MG3), and
MrSID Generation 4 (MG4) images, including the ability to work with “composite” MG3 andMG4
images.

JPEG 2000 support

Decoding of JPEG 2000 images is provided using the same framework as theMrSID
operations, including support for geospatial metadata.

NITF support

Decoding of NITF images is provided using the same framework as theMrSID operations,
including support for geospatial metadata.

Support for WKTs

TheMrSID SDK supports spatial reference systemmetadata for MrSID, JPEG 2000, and other
georeferenced image formats.

Simple C API

For those developers who want rudimentary decoding of MrSID or JPEG 2000 imagery without
the complexity of the C++ interface, a simple C API is provided. While limited in functionality,
the C API enables access to basic image properties and scene decoding.

Image writers

The SDK provides support for writing a number of common file formats, including BIP/BIL/BSQ
(raw), Windows BMP, JPEG, and TIFF/GeoTIFF.

Image transformers

- 2 -

Introduction

The SDK also provides a number of common image filter or transform operations, including
cropping, watermarking, mosaicking, scaling, dynamic range adjustment, datatype conversion,
and colorspace conversion.

Documentation

The documentation includes both a full User Manual and a ReferenceManual, plus a number of
examples showing how to implement common tasks with the SDK.

Platforms

The SDK is available for many platforms, includingWindows, Linux (x86), andMac (OS X). The
Windows version provides dynamic libraries (DLLs). Both 32- and 64-bit versions are available
for all platforms.

Component interoperability

TheMrSID SDK's public interfaces are coded to a clean subset of C++ language features to
avoid the interoperability problems often encountered by developers: STL incompatibilities,
exceptions andmemory allocations crossing library boundaries, and advanced template
compilation.

How to Read this Manual
This User Manual gives a high-level view of the design, features and classes that make up theMrSID
SDK.

The chapter Architecture and Design describes the overall architecture of the image pipeline and
strip-based decodingmechanism that this SDK implements.

Further chapters briefly motivate and describe the various classes that make up the SDK.

Note that the descriptions provided are designed only to introduce the classes; for detailed
information on specific features, methods, etc, please refer to the ReferenceManual at
doc/ReferenceManual/index.html.

Included in this manual is a chapter describing the command line applications that are included with
the SDK, as well as a glossary and an appendix of "technical notes” explainingminutiae about which
youmight be curious.

SDK Contents
The contents of theMrSID SDK include the following:

Documentation

Cover documentation

In the top-level directory, the README.txt and CHANGES.txt files contain information about
late changes to the SDK

License

- 3 -

MrSID Decode SDK9.5 for Raster – User Manual

In the top-level directory, the file LICENSE.txt contains the complete licensing information for
this SDK

User Manual

The User Manual (this document) can be found at doc/UserManual/index.htm

Reference Manual

The ReferenceManual, containing detailed information about each class andmethod, can be
found at doc/ReferenceManual/index.html

Headers and Libraries

Headers

The header files for theMrSID SDK are located in the include directory. (The Reference
Manual provides full documentation for these headers.)

Libraries

The libraries for the SDK are located in the lib directory

Non-LizardTech libraries

Other non-LizardTech libraries supplied with this SDK are located in the 3rd-party directory

Sample Applications

Command-line tools

A number of tools are provided in the bin directory to aid in development, debugging, and
testing. (Documentation for these tools can be found in the chapter, Command Line
Applications.)

Example Code

A number of example functions are included in the directory examples/src. The test images used
by these examples are located in examples/data. (The ReferenceManual provides additional
information about these examples.)

- 4 -

Getting Started
This chapter provides some preliminary information to get you started using theMrSID SDK. At the
least, we suggest you skim this User Manual and the accompanying ReferenceManual at
doc/ReferenceManual/index.html, then build and execute the provided example application.
The example sources should give you enough information to determine what level of SDK support
your own application will require. At that point you can go back and reread the User and Reference
manuals more closely, focusing on the areas appropriate to your situation.

NOTE: The interfaces and libraries supplied with theMrSID SDK are not compatible or
interoperable with the previous 7.x series of MrSID SDK releases, also called the GeoExpress SDK.
ExistingMrSID-enabled applications will require source code changes tomake use of the SDK.

System Requirements
TheMrSID SDK is a set of C++ libraries that must be used in conjunction with the specific
development environment for your platform. The supported configurations are listed below.

For optimal performance, verify that your systemmeets the followingminimum recommended
hardware requirements:

l 2GHz processor
l 2GB of RAM

NOTE: Please contact LizardTech for additional distributions for other platforms.

Windows (64-bit)
Your development environment Target platform Library to use

Visual Studio 2017 on Windows
Server 2008 or newer

64-bit Windows 7/ 8/ 10/ Server 2008/
Server 2012/ Server 2016

Visual C++ 14.0
(VC14.0 Update 3 or
greater) / 64-bit

Visual Studio 2015 on Windows
Server 2008 or newer

64-bit Windows 7/ 8/ 10/ Server 2008/
Server 2012/ Server 2016

Visual C++ 14.0
(VC14.0) / 64-bit

Visual Studio 2013 on Windows
Server 2008 or newer

64-bit Windows Vista/ 7/ 8/ Server 2003/
Server 2008/ Server 2012/ Server 2016

Visual C++ 12.0
(VC12.0) / 64-bit

- 5 -

MrSID Decode SDK9.5 for Raster – User Manual

Windows (32-bit)
Your development environment Target platform Library to use

Visual Studio 2017 on Windows
Server 2008 or newer

32-bit Windows 7/ 8/ 10/ Server 2008/
Server 2012/ Server 2016

Visual C++ 14.0
(VC14.0 Update 3 or
greater) / 32-bit

Visual Studio 2015 on Windows
Server 2008 or newer

32-bit Windows 7/ 8/ 10/ Server 2008/
Server 2012/ Server 2016

Visual C++ 14.0
(VC14.0) / 32-bit

Visual Studio 2013 on Windows
Server 2008 or newer

32-bit Windows Vista/ 7/ 8/ Server 2003/
Server 2008/ Server 2012/ Server 2016

Visual C++ 12.0
(VC12.0) / 32-bit

Linux
Your development environment Target platform Library to use

GCC 5.3.1 on RHEL 6.8/64 64-bit RHEL 6.8/ RHEL 7.0/ CentOS 7.0 GCC 5.3.1 / 64-bit

GCC 4.8.2 on RHEL 6.8/64 64-bit RHEL 6.8/ RHEL 7.0 GCC 4.8.2 / 64-bit

NOTE: TheMrSID libraries for Red Hat Linux are built using the Red Hat Developer Toolset on Red
Hat Enterprise Linux 6.8. Execution of applications built using this SDK is only supported on RHEL
6.8 or later. (TheGCC 5.3.1 compiler is included in version 4.1 of the Software Collections
Developer Toolset.)

Macintosh
Your development environment Target platform Library to use

Clang 8.0 (part of Xcode 8.2) on
macOS 10.12

macOS 10.12 or later Mac OS X 10.12 /
Universal / Darwin 16

Clang 7.0 (part of Xcode 7.3) on
Mac OS X 10.11

macOS 10.11 or later Mac OS X 10.11 /
Universal / Darwin 15

iOS
Your development environment Target platform Library to use

Clang 8.0 (part of Xcode 8.2) on
macOS 10.12

OS: iOS 8 and higher
Processor: ARMv7/ ARMv7s/ ARM64/
x86 and x86-64 simulators

Xcode 8.2 iOS 8 /
Universal

Clang 7.0 (part of Xcode 7.3) on
Mac OS X 10.11

OS: iOS 8 and higher
Processor: ARMv7/ ARMv7s/ ARM64/
x86 and x86-64 simulators

Xcode 7.3 iOS 8 /
Universal

Android
Your development environment Target platform Library to use

Android NDK 13b on Ubuntu
Desktop 12.04

OS: Android API Level 12 and higher
Processor: armeabi/ armeabi-v7a/ x86/
arm64-v8a/ x86_64

GCC 4.9 / Universal

- 6 -

Getting Started

Installation
No specific installation is required to use the GeoExpress SDK beyond copying the SDK contents
from themedia provided (CD, ISOCD image, archive from FTP site, etc.) to your local computer.

See the file README.txt in your installation directory for complete instructions.

Example Code
TheGeoExpress SDK includes a number of examples that demonstrate themajor features of the
SDK. The table below shows which files to consult for various types of operations.

Opening image files JP2 DecodeJP2ToBBB.cpp
DecodeJP2ToJPG.cpp
DecodeJP2ToMemory.cpp

MrSID DecodeMrSIDBandSelection.cpp
DecodeMrSIDToMemory.cpp
DecodeMrSIDToRaw.cpp
DecodeMrSIDToTIFF.cpp

NITF DecodeNITFToBBB.cpp

Setting the number of threads for
a decoding operation

MrSID DecodeMrSIDToMemory.cpp

Getting image properties ImageInfo.cpp
MetadataDump.cpp

Writing images files Raw DecodeJP2ToBBB.cpp
DecodeMrSIDToRaw.cpp
DecodeNITFToBBB.cpp

JPEG DecodeJP2ToJPG.cpp

TIFF DecodeMrSIDToTIFF.cpp

Working with pixel data using
LTISceneBuffer

Accessing the BSQ data DecodeMrSIDBandSelection.cpp
DerivedImageFilter.cpp

Converting between BSQ and
BIP

DerivedImageReader.cpp
DerivedImageWriter.cpp

Using your own memory DecodeJP2ToMemory.cpp
DecodeMrSIDToMemory.cpp

Using sub-buffers SceneBuffer.cpp

Working with multispectral data DecodeMrSIDBandSelection.cpp

Working with Alpha DecodeMrSIDBandSelection.cpp

Creating custom progress and
interrupt delegates

ProgressDelegate.cpp
InterruptDelegate.cpp

Code example files to use as demonstrations of various common tasks

- 7 -

MrSID Decode SDK9.5 for Raster – User Manual

Converting a Geo region of
interest to an LTIScene

GeoScene.cpp

Checking MrSID version DecodeMrSIDLidar.cpp

Looking up error messages ErrorHandling.cpp

Working with LTIOStreamInf DerivedStream.cpp
UsingStreams.cpp

Building an image pipeline Pipeline.cpp

Creating sub-class of
LTIImageStage

LTIImageReader DerivedImageReader.cpp

LTIImageFilter DerivedImageFilter.cpp

LTIImageWriter DerivedImageWriter.cpp

Technical Support
Most technical issues can be resolved using the various resources you have available. In addition to
the product documentation and the README file, LizardTech offers a knowledge base and product
updates on the LizardTech website.

Knowledge Base

http://www.lizardtech.com/support/kb/

The LizardTech Knowledge Base contains articles about known technical and usage issues and is
frequently updated.

Developer Website

http://developer.lizardtech.com

The LizardTech DeveloperWebsite provides you with the tools you need to support viewingMrSID
and JPEG 2000 formats within your application: downloadable C++ SDKs, technical notes and
documentation and a link to additional email support.

Community Forums

http://www.lizardtech.com/forums/

The fora are a place to engage in intelligent discourse with the geospatial community. Ask questions,
provide answers, and share product usage tips with other Lizardtech customers around the world.

Product Updates

http://www.lizardtech.com/products

Updated versions of LizardTech viewer tools are available for download at no cost.

- 8 -

http://www.lizardtech.com/support/kb
http://developer.lizardtech.com/
http://www.lizardtech.com/forums
http://www.lizardtech.com/products

Getting Started

Support Plans

http://www.lizardtech.com/purchase/other.php

Protect your investment in LizardTech software by participating in a LizartTech support plan. For
more details, please contact your regional LizardTech office.

Contacting Technical Support

http://www.lizardtech.com/support

To contact technical support, visit the website at the above URL and follow links to the LizardTech
Knowledge Base or the Product Activation page. A Contact Form is also provided for issues that
require further assistance.

In an emergency, call 206-902-2845 between the hours of 8 AM and 5 PM Pacific Time.

IMPORTANT: Please have the following information available to assist in resolving your problem:

l Which version of theMrSID SDK you are running
l Other LizardTech products you have installed
l Which operating system you use
l How much free hard drive space your computer has
l How much RAM your computer has
l Version of compiler
l Copy of source code demonstrating the problem, simplified as much as possible
l Relevant test data to allow us to reproduce the problem
l Copy of compiler error messages if appropriate

- 9 -

http://www.lizardtech.com/purchase/other.php
http://www.lizardtech.com/support

Architecture and Design
This section describes some of the design principles used by theMrSID SDK, including the image
pipelinemodel, strip-based decoding and some of the C++ conventions used by themain classes.

Subsequent sections will describe the specific classes that make up the SDK.

Pipeline Design
An image processing pipeline is a system in which each image “stage” performs one specific
operation on an image or a piece of an image, and then passes the resulting image data on to the next
stage. TheMrSID SDK uses this model to provide the ability to construct workflows that read, write,
andmanipulate images in a variety of ways.

Image Stages

There are three basic types of image stages:

l Image reader: an image reader will generate (“decode”) pixel data from some external image
source, such as a TIFF or MrSID file. A reader serves as the initial stage of a pipeline and
passes pixel data to its successor stage(s).

l Image filter: an image filter or “transformer” will change the pixel data received from its
predecessor image stage(s) in someway and pass the new data on to its successor image
stage(s). Examples of filters include colorspace and datatype transformers, which change the
properties of pixels; mosaickers, which combinemultiple images into one image; and
histogram stretchers, which dynamically scale the pixel values within some numeric range.

l Image writer: an image writer will produce (“encode”) some external image object, such as an
NITF or JPEG 2000 file. A writer serves as the final stage of a pipeline, receiving data from its
predecessor stage; it can be viewed as the “opposite” of an image reader.

The simplest pipeline consists trivially of just a single image reader. The reader may or may not be
connected to one or more filter stages. (As wewill see later, a writer may not be required for all
workflows.)

Some Examples

In Figure 1 an image pipeline is shown consisting of aMrSID image reader connected to a filter that
changes the image’s colorspace. Given a filename, theMrSID reader will pass pixel data to the filter,
which will transform the (presumably RGB) pixel data to grayscale pixel data.

Figure 1: Simple pipeline with MrSID image reader and color space filter

- 11 -

MrSID Decode SDK9.5 for Raster – User Manual

Figure 2 shows a pipeline that reads raw image data (in BIP/BIL/BSQ form), performs some dynamic
range adjustments on the data in a filter stage, and writes the image out again as a raw file. Such a
pipelinemight be used tomassage 12-bit image data tomore easily displayed 8-bit data.

Figure 2: Pipeline that readsand writes raw image data

Figure 3 shows a pipeline with twoGeoTIFF image readers that are connected to amosaicking stage,
which is in turn connected to a JPEG 2000 writer. (TheGeoTIFF images are presumed to be
“compatible” in a geospatial sense.)

Figure 3: Pipeline with two image readers, amosaicking filter and a JP2writer

Finally, Figure 4 shows a watermarking pipeline: a JPEGwatermark is inserted onto the base TIFF
image, and the result is written to aMrSID file. Note how this pipeline diagram is structurally similar to
Figure 3.

Figure 4: Watermarking pipeline

Implementation

Several abstract classes are used to construct the pipeline system.

- 12 -

Architecture and Design

l LTIImage provides the basic properties of an image, such as width and height, pixel type,
etc.

l LTIImageStage extends the LTIImage class by adding functions for reading pixel data
from an image.

l LTIImageReader extends the LTIImageStage class to serve as the base class for all
readers.

l LTIImageFilter extends the LTIImageStage class to serve as the base class for all
filters. The constructor for an LTIImageFilter takes an LTIImageStage.

l LTIImageWriter is the base class for all writers. It does not inherit from any of the above
classes as it serves only as a “sink”, i.e. it does not export any image properties as an
LTIImage would. The constructor for an LTIImageWriter takes an LTIImageStage.

Figure 5 shows the inheritance diagram for these classes. These classes, and classes derived from
them, are described in subsequent sections.

Figure 5: Inheritance

Another class, LTIImageStageManager, is a base class for managing a set of LTIImageStage
objects – it can be thought of as an array of such objects. It used for passing a set of image stages to
certain types of mosaic filters to reduce their resource usage. The LTIImageStageManager is also
used for “wrapping” file formats that can holdmultiple images.

Strip-Based Decoding
TheMrSID SDK is designed for workflows involving large images. To accommodate large (gigabyte-
sized) datasets, the image pipeline framework is designed to process images in advancing horizontal
strips. This reduces the amount of memory required to process the image.

To read a scene from an image, the SDK uses the following general workflow:

begin read, for given scene
foreach strip in scene, do
xxxxxread strip
done
end read

- 13 -

MrSID Decode SDK9.5 for Raster – User Manual

These three phases are implemented in the LTIImageStage class using themethods readBegin
(), readStrip(), and readEnd(). Thesemethods handle all the logic for decomposing the full
scene into sequential strips, and they internally call the corresponding pure virtual protectedmethods
decodeBegin(), decodeStrip(), and decodeEnd(), which derived image stages are required
to implement as appropriate.

The “connection” between stages is accomplished via an LTISceneBuffer object passed into the
read() call. As each strip is processed in each stage, a subsection of the buffer is used and passed
between stages; in general, no intermediate buffering is required as the same buffer is used through
the entire pipeline.

The LTISceneBuffer class stores the image data in a BSQ format for a specified width and height.
Typically the user will supply the allocatedmemory to be used for the image data; however, the class
also supports creation of a new buffer with a “windowed” view into an original buffer. This enables the
same region of memory to be used by multiple stages in the pipeline, without the need for excessive
data copying.

For decodes of large images, calling read() with a single large buffer is clearly inappropriate. In this
case, the client at the “end” of the pipeline can choose to explicitly implement the above decode
begin/strip/end workflow in a “pull” model, and only need to have one strip worth of image data
resident at a time. The LTIImageWriter class implements this functionality, so that derived writers
can encode large images efficiently.

Scenes
As implied in the previous section, when a read() call is made to an image stage, the scene of
interest must be specified. A scene, implemented by the LTIScene class, has three basic
properties:

l upper-left x- and y-position
l width and height
l magnification (resolution)

The position is expressed in pixel space, relative to the givenmagnification, with (0,0) and (w-1,h-1)
being the upper-left and lower-right corners of the image, where w and h are the width and height of
the image (in pixels).

The scene width and height are also expressed in terms of pixels, but at themagnification of the
scene. That is, the width and height values represent the pixel dimensions of the scene as decoded to
the output buffer.

Themagnification value is a floating point value representing the resolution or scale at which the
image is to be read. A magnification of 1.0 corresponds to the full resolution of the image (one to one);
a value of 0.5 represents the image at a downsampled view of half the full width and height, and a
value of 2.0 represents the image at an upsampled view of twice the full width and height. Note:Only
powers of two are supported for most image types (although filters for arbitrary resampling are
available).

As an example, consider an image that is 625x625 pixels, as shown in Figure 1.

- 14 -

Architecture and Design

- 15 -

MrSID Decode SDK9.5 for Raster – User Manual

Figure 1: Input scene; (x,y)=(0,0) (w,h)=(625, 625) mag=1.0

Themiddle rectangle in red corresponds to a full-resolution scene that is 200x200 pixels taken from
the upper-left corner of the image. This is shown in Figure 2.

Figure 2: Red Input scene: (x,y)=(0, 0) (w,h)=(200,200) mag=1.0

The inner rectangle in blue corresponds to a scene at twice the resolution (mag=2) that is also
200x200 pixels and also taken from the upper-left corner of the image. This scene is shown in Figure
3. Note that the scene is extracted into a buffer sized for 200x200 pixels, but the corresponding
“footprint” in full-resolution space is only 100x100.

Figure 3: Blue Input scene: (x,y)=(0, 0) (w,h)=(200,200) mag=2.0

The outer rectangle in green corresponds to a scene at mag=0.5 that is again 200x200 pixels from the
upper-left corner of the image; see Figure 4. Note that the scene is extracted into a buffer sized for
200x200 pixels, but the corresponding footprint in full-resolution space is 400x400.

- 16 -

Architecture and Design

Figure 4: Green Input scene: (x,y)=(0, 0) (w,h)=(200,200) mag=0.5

At mag=2.0 the scene is effectively sampling from an image of size 1250x1250. Likewise at mag=0.5
the scene is sampling from an image of size 313x313.

NOTE: Not all image formats natively support multiresolution decoding. MrSID and JPEG 2000,
being wavelet-based systems, efficiently support decoding at powers-of-two scales. In order to
achieve this effect with other formats a resampling filter must be applied.

Multi-Threading
 If you run the SDK on amachine with amulti-core processor or on amachine with multiple
processors, the SDK creates multiple threads to run decoding operations more quickly. By default,
the SDK uses themaximum number of threads available for optimal performance. Themaximum
number of threads equals the number of cores in your processor.

IMPORTANT: If you do not want to use themaximum number of threads, youmust set the number
of worker threads that you want to use. Use the setMaxWorkerThreads() function defined in the
MrSIDImageReader class to set the number of threads. For more information, see the Reference
Manual.

Threaded Building Blocks
TheMrSID SDK uses Intel Threaded Building Blocks (TBB) tomanage threads. Programs that you
create with the SDK must include the TBB library to take advantage of multi-threading. The
TBB library is stored in the following location:

<SDK Directory>\lib\tbb.dll

To use additional TBB features in your program, download TBB header files and refer to the
TBB documentation at the following URL:

https://www.threadingbuildingblocks.org/

- 17 -

https://www.threadingbuildingblocks.org/

MrSID Decode SDK9.5 for Raster – User Manual

Other Design Considerations
The C++ classes and functions that make up theMrSID SDK follow a few other general principles
and conventions. They are explained here tomotivate their usage. For other, less central principles,
see "Coding Conventions" on page 59.

Status Codes

Many of the SDK member functions return status codes to report success or failure conditions,
instead of other mechanisms such as throwing exceptions. The status codes are represented using
the LT_STATUS datatype (typedef’d to an unsigned integer). Functions that return status codes must
be checked for success or failure.

Initializations

Heavy-weight objects requiring nontrivial work in their constructors provide an initialize() member
function that must be called immediately after invoking the object’s constructor. While this requires
extra code for the developer, it provides ameans for returning status codes back to the caller without
relying on constructor-thrown exceptions.

Creator Deletes Rule

The SDK classes generally follow the “creator deletes” rule. That is, the object that allocates a new
object on the heap is responsible for deleting it as well. (The documentation notes specifically where
this rule does not hold and ownership is to be passed across a call-site.) In some cases reference
counting, via the RC<> class, is used to address this issue.

“No Magic” Rule

The functions in the SDK tend not to provide features or functionality that attempt to silently “guess”
at default values for complex situations or otherwise “just do the right thing.”While such guesses are
often correct and occasionally easier for the developer, they are just as often incorrect or serve only to
mask deeper errors or workflow inefficiencies. For example, the various decodemethods can return
pixels only in the colorspace and datatype of the input image stage: nomechanism for implicit
conversion is available, e.g. via configuration of the output buffer. In this case, a datatype filter and a
colorspace filter must be explicitly built into the image pipeline.

Reference Counting

The SDK uses reference counting tomanage the lifespan of objects that comprise image pipelines.
This is similar in spirit to “smart” or “auto” pointers. The static member function create() of a class
should be used to create a new instance of that class. Similarly, the (non-static) member function
release() should be used when you are done with object – for example, when the pointer to the
object goes out of scope. The retain()function should be used to hold onto an object, i.e.
increment the reference count; if you created the object, however, do not call retain(). When the
last reference calls release(), the object will delete itself.

- 18 -

The Support Classes
Webegin with the set of types, classes and functions that underlie the entire SDK. These do not
provide any specific imaging functionality, but they are used as primitives for all the other classes that
follow in subsequent chapters.

The names of the types, classes, etc. described in this chapter are generally prefixed with the letters
“LT”. The corresponding header files can be found in the include directory.

Examples of the use of many of these classes can be found in the examples directory and in the
ReferenceManual at doc/ReferenceManual/index.html.

Preprocessor Constants and Basic Typedefs
The C header file lt_base.h should be included by all source files using theMrSID SDK. It includes
four other C headers (lt_define.h, lt_platform.h, lt_status.h, and lt_types.h), which
contain definitions for the following:

l miscellaneous preprocessor constants andmacros used throughout the SDK
l preprocessor constants that define the compiler, OS, etc. used by the current target
environment

l the LT_STATUS type used throughout the SDK for success/failure return values, and some
common status codes

l the typedefs used by the SDK for the primitive/integral datatypes

Status Strings
The file lt_utilStatusStrings.h declares several functions useful for mapping LT_STATUS
values into text strings that indicate the nature of the error condition encountered.

Most applications will want to use either the getRawStatusString() or
getLastStatusString() function for retrieving error strings.

The textual error strings for the integer-values LT_STATUS codes can be found by searching in the
files ./include/*status.h. This may be particularly helpful during the development (debugging)
process.

For details on using the error string system, consult the ReferenceManual at
doc/ReferenceManual/index.html.

The LTIFileSpec Class
For portability between Unix andWindows systems and ease of use in internationalized
environments, the SDK uses the class LTFileSpec to represent file names and paths.

In all cases where the SDK requires use of a file name, for example as a function parameter, an
LTFileSpec will be used. It is the application’s responsibility to translate filenames from the app-
level representation, for example a char*, into an LTFileSpec.

The LTFileSpec class provides the following features:

- 19 -

MrSID Decode SDK9.5 for Raster – User Manual

l creation of an LTFileSpec from a directory path and file name, as represented in a variety of
formats (multibyte, UTF-8, wchar_t, etc.)

l conversion from LTFileSpec to a variety of formats
l Unix-style dirname() and basename()
l file name extension extraction and replacement
l differentiation between relative and absolute paths

Streams
TheMrSID SDK provides an abstract stream class, LTIOStreamInf, which provides a Unix stdio-
like interface for working with data in files or file-like objects. Rather than relying on the application to
provide a file name or a FILE*, many of the SDK functions are designed to operate on
LTIOStreamInf objects instead. This enables more portable and extensible interfaces.

The LTIOStreamInf interface requires only a small set of primitives, including:

l open() and close()
l read() and write(), using byte arrays
l seek() and tell(), using 64-bit offsets
l isOpen() and isEOF()

(For details on the precise semantics of these primitives, see the ReferenceManual at
doc/ReferenceManual/index.html and "Notes on Streams" on page 65 of this
documentation.)

A number of useful stream types, including files, in-memory buffers, sockets, and buffered streams,
can be implemented using the stream interface. The SDK provides the following stream
implementations:

l LTIOFileStream –OS-native file support (2GB or less only)
l LTIOMemStream – in-memory, read-only buffer of fixed size
l LTIODynamicMemStream – in-memory read/write buffer, which grows as required
l LTIOBufferedStream – nontrivial buffering for an underlying LTIOStreamInf
l LTIOCallbackStream – stream implemented via user-supplied callbacks for basic
operations (read, write, open etc.)

Examples

The ReferenceManual contains several examples of working with streams, including code showing
how to perform simple reads and writes and how to derive your own simple stream from
LTIOStreamInf.

- 20 -

The SDK Base Classes
The image pipeline reader, writer, and filter classes that support theMrSID SDK’s image pipeline
system all rely on a set of base or “core” classes. This chapter introduces these classes, which
represent such constructs as pixels, geographic positions, scenes, buffers, and so on.

The names of the types, classes, etc., described in this chapter are generally prefixed with the letters
“LTI”. The corresponding header files can be found in the include directory.

For detailed information on these classes, please refer to the ReferenceManual at
doc/ReferenceManual/index.html. Examples of the use of many of these classes can be
found in the ReferenceManual and in the examples directory.

Subsequent chapters of this manual introduce the actual readers, writers, and filters provided with the
SDK, including theMrSID and JPEG 2000 encode and decode classes.

Base Enums
The lti_types.h header contains a number of enums used throughout the SDK, including
LTIColorSpace and LTIColor, for indicating pixel color spaces, e.g. RGB ormultispectral, and
LTIDataTypes, for indicating pixel datatypes, e.g. 8-bit unsigned integers or 32-bit floats.

Base Classes
A number of lightweight classes are used to represent primitive objects in support of the imaging
framework.

The LTISample class represents a single sample of a pixel; the properties of a sample include
datatype, color, and an optional value. The LTIPixel class represents a set of samples; the
properties of a pixel include the samples themselves and a colorspace. The
LTIPixelLookupTable class is used to represent the concept of a set of pixels in a color lookup
table.

The LTIGeoCoord class represents simple geographic position information, analogous to the
conventional AUX files or world files used inmany GIS systems. The properties of this class include
the projection system (WKT), the upper-left x- and y-position, the x- and y-resolution, and the two
rotation terms. Every LTIImage has associated LTIGeoCoord information.

The SDK uses delegates (see delegates in Glossary) as ameans of proving the functionality of
callback functions in amore natural C++ style. The twomost common delegate classes,
LTIInterruptDelegate and LTIProgressDelegate, providemechanisms for applications
performing (potentially long-running) read() operations tomake out-of-band requests to abort the
operation and to receive out-of-band notifications of percent-complete. Examples of delegate usage
can be found in the ReferenceManual at doc/ReferenceManual/index.html.

Finally, the LTIUtils class contains a number of static methods generally useful for working with
the SDK. These include conversion between dynamic range representations, conversion between
scale/magnification representations, colorspace information, SDK version information, etc.

- 21 -

MrSID Decode SDK9.5 for Raster – User Manual

The Image Classes
As described in the previous chapter, a hierarchy of several classes is used to represent images,
image stages, and the image pipeline. See Figure 1.

Figure 1: Inheritance

The LTIImage class represents the properties of an image, including:

l width and height
l pixel type (number of bands, colorspace, datatype)
l background and nodata pixel values
l dynamic range of the samples
l simple geographic coordinates
l supportedmagnification range
l metadata

The LTIImageStage class extends LTIImage by adding:

l strip-based read functions
l progress and interrupt delegates

The LTIImageReader and LTIImageFilter classes extend LTIImageStage in order to more
closely reflect their positions and operations in the image pipeline. These two classes are discussed
in subsequent chapters.

While the LTIImageWriter class does not inherit from any of the other LTIImage classes; it
replicates some of the same functionality (such as strip-based operations and delegate control) so
that it can be used as a client of an image pipeline. The LTIGeoFileImageWriter class is derived
from LTIImageWriter to aid in implemented image writers. LTIGeoFileImageWriter extends
LTIImageWriter to provide the ability to output to a specific form (stream or file) and optionally
generate world files.

The LTIImageStageManager is a base class for managing a set of LTIImageStage objects – it
can be thought of as an array of such objects. It used for passing a set of image stages to an

- 22 -

The SDKBase Classes

LTIImageMosaicFilter and enabling themosaic filter to reduce its resource usage. The
LTIImageStageManager is also used for “wrapping” file formats that can holdmultiple images.

The Raw Readers and Writers
Because they are the foundation of many other readers and writers, as well as being useful for
development and debugging, the SDK base classes include “raw” reader and writer classes,
LTIRawImageReader and LTIRawImageWriter.

The two raw classes read and write image data directly to binary files (or streams) with no header
information. Both support BIP/BIL/BSQ output formats and provide for big/little/host byte ordering
(see Endianness in the "Glossary" on page 95), plus the usual LTIImage properties of background
and nodata color, geographic position, metadata, etc.

The LTIBBBImageReader and LTIBBBImageWriter classes extend the raw reader and writer
classes by providing the ability to read and write “BBB” headers to accompany the raw image data.
For information on the supported header syntax see "Notes on BBB Files" on page 68.

Scene and Buffer Management
The two parameters to the LTIImageStage::read() function are an LTIScene object and an
LTISceneBuffer object. These together specify the region of the image to be decoded and the
buffer to put the data into.

The properties of an LTIScene are the upper-left point, dimensions, andmagnification of the region
to be decoded. (For more information see "Scenes" starting on page 14.)

As a scene is a largely read-only embodiment of its properties, the LTINavigator class extends
LTIScene by adding functions to control the scene, including:

l move scene to a given location or by a given amount
l zoom to a givenmagnification or by a given amount
l determine the “best fit” scene of the image to a given size (within the power-of-2 resolution
constraints)

l set the scene based on upper-left, lower-right, or center points
l set the scene using geospatial position, as opposed to pixel coordinates

By using the navigator class, issues of proper rounding control and keeping the scene within the
image can bemanaged transparently to the user.

The LTISceneBuffer class is used to represent the in-memory buffer that will hold the data
produced by the read() call. The buffer can be supplied directly by the user, allocated internally by
the class, or inherited from another scene buffer. Depending on how it's configured, it can also
represent only a subset of the bands in the image, so that only the bands that are asked for are
decoded.

While the extents of the “visible” or “exposed” window of the buffer must be at least as large as the
dimensions of the scene being used for the read operation, the actual buffer might be considerably
larger; this allows for read requests to target specific regions of the buffer, as is required for strip-
based decoding workflows.

- 23 -

MrSID Decode SDK9.5 for Raster – User Manual

As an example, consider Figure 1, which shows an LTISceneBuffer object that has a total size of
200x100 (20,000 pixels) and a window size of 160x60 (9,600 pixels). This buffer can be used to
“insert” a scene onto the total buffer, using (40,20) as the upper-left position. (This upper-left position
corresponds to byte 200*20+40 of the buffer, assuming an 8-bit, 1-banded image.)

Figure 1: LTISceneBuffer

The data in the scene buffer is internally stored in a packed BSQ format. By supporting only one data
layout, the complexity of the various image stages and the need for additional memory-to-memory
copies is reduced. However, when constructing decoder pipelines the client often needs the data
organized in some other fashion, so the scene buffer class supports these “import/export” features:

l copy data into the buffer frommemory (in packed BSQ or BIP forms)
l copy data into the buffer from a stream (in packed BSQ or BIP form)
l copy data from the buffer to memory (in packed BSQ or BIP form)
l copy data from the buffer to a stream (in packed BSQ or BIP form)
l copy data from the buffer to memory, with full control over layout and padding (such as
padding of rows to satisfy alignment constraints)

The copying is performed relative to the visible window of the buffer, not the total buffer. For the BSQ
memory functions, the datamay be held as one large BSQ buffer or as one individual buffer for each
band.

See code samples for demonstrations of how tomanage scenes and scene buffers.

- 24 -

Concrete Image Filters and Writers
TheMrSID SDK uses two types of classes – image filters and image writers – for transforming and
encoding images.

Image Filters
The LTIImageFilter class is derived from the LTIImageStage class and is used as the base
class for implementing specific (and generally simple) image transformations. The following image
readers are supplied with this SDK:

l LTIAddAlphaFilter: This class adds an alpha band to an image that does not have one,
based on the image's transparency. This is useful for MG4 encoding pipelines.

l LTIBandSelectFilter: This class creates a single image which is a composition of
selected bands from a set of source images. It can be used, among other things, to remap the
color bands of a single image (formerly LTISampleMapFilter) or to merge several
greyscale images into a single image (formerly LTIColorCompositeFilter).

l LTIColorTransformer: changes the colorspace of an image. The supported transforms
include transforming to and from RGB, grayscale, and CMYK.

l LTICropFilter: crops the image to a smaller width and height. Note that this is a reduction
in image size; this is a true crop, so some data will be lost.

l LTIDynamicRangeFilter: adjusts the sample values of the image to fit the given dynamic
range by scaling the values by appropriate amounts. This is useful as a preprocessing step to
displaying datasets that don't use the full precision of their datatypes, for example 7- or 12-bit
data.

l LTIEmbeddedImage: creates a new image of the given size, containing the input image
"embedded" within it. This class is used tomake an image "larger" by increasing its width and
height without actually stretching the image itself, for example to place an image on a larger
"canvas" so as to provide it with a larger background. (This class is used by the
LTIMosaicFilter class to simplify certain computations by making all the input images
map to the same underlying grid shape and size.)

l LTIMosaicFilter: creates a single mosaicked image from a set of input images. The set of
input images are all assumed to be in the same coordinate space.

l LTIMultiresFilter: extends themagnification range of an image to allow decodes at
different resolutions than the image stage would normally allow. Note that this class is not the
same as the LTIStaticZoomFilter class, which scales themagnification statically for the
pipeline when initially constructed; this class allows for the zoom level to be extended for an
individual decode operation.

l LTIStaticZoomFilter: magnifies the image by a fixed amount. In effect this simply
changes the width and height of the image statically, i.e. for the life of the pipeline.

l LTITranslationFilter: translates (moves) the geo coordinates of the image.
l LTIViewerImageFilter: performs certain datatype and colorspace transforms on an
image tomake it more readily displayable. This class wraps the
LTIDataTypeTransformer, LTIColorTransformer, and LTIDynamicRangeFilter
classes in order to transform the input image into an 8-bit datatype with colorspace grayscale
or RGB, as this is the format required by most display engines.

- 25 -

MrSID Decode SDK9.5 for Raster – User Manual

l LTIWatermarkFilter: inserts a watermark image onto the current image stage at a given
position. The "watermark" is represented as an input image stage andmust have the same
pixel properties (colorspace, datatype, etc.) as the image it is to be inserted into.

Examples

The ReferenceManual at doc/ReferenceManual/index.html contains several examples of
working with image filters, including code showing how to insert a filter into an image pipeline and how
to derive your own simple filter from LTIImageFilter.

Image Writers
The LTIImageWriter class is the base class for implementing specific file format writers. While
not derived from any of the other LTIImage classes, it is nonetheless designed to act as an “end” of
the image pipeline in order to support writing out an image in a stripwise fashion. The following image
writers are supplied with this SDK:

l BBBImageWriter – writes the BIP/BIL/BSQ raw format
l BMPImageWriter – writes theWindows BMP format
l GeoTIFFImageWriter – writes the GeoTIFF format
l JpegImageWriter – writes the JPEG format (Note: "original" JPEG, not JPEG 2000)
l TIFFImageWriter – writes the TIFF format

Examples

The ReferenceManual at doc/ReferenceManual/index.html contains several examples of
working with image writers, including code showing how to write a scene with an LTIImageWriter
and how to derive your own simple writer from LTIImageWriter.

- 26 -

MrSID Support
MrSID offers a solution to the challenges and a toolkit for the opportunities digital imaging presents.
Because encoding toMrSID results in a lossless, single-source image, MrSID yields better storage
economy, more efficient transfer of data, and improved workflow. A single, highly compressed, high-
quality image serves as the source for any data requested from that image, optimized for instant
viewing on any device.

This MrSID technology was acquired by LizardTech in its original form from Los Alamos National
Laboratories (LANL), where it was developed under the aegis of the U.S. government for storing
fingerprints for the FBI. LizardTech was formed to commercialize and further develop the technology,
andMrSID quickly became the standard for viewing, distributing and storing raster imagery in
geographic information system (GIS) environments. MrSID is the technology and image format that
all major geospatial software applications support today.

MG2, MG3 and MG4
Themost current version of theMrSID technology and file format is known as MrSID Generation 4
(MG4). Its predecessors were known as MG3 andMG2.

MG2was the first commercial version of the compression technology and file format originally
developed at Los Alamos National Laboratory. MG2 supports selective decoding (by scale or region),
but unlikeMG3 andMG4 it does not support optimization workflows, lossless encoding, or composite
images (although anMG2 image can be a tile within anMG3 composite). Additionally, the quality of
MG2 compression is in many cases somewhat inferior to that of MG3 andMG4.

MG3 introduced lossless encoding, optimization (by scale, quality or region) and selective decoding
(by scale, quality or region). In addition, MG3 introduced the ability to storemultiple images in a single
file known as a “composite” MG3 file. This allows for largeMrSID images to be “updated” when new
data for certain areas becomes available. The “tiles” that make up anMG3 composite are complete
and valid images unto themselves andmay be in theMG3 orMG2 format (MG4 composites can
contain only MG4 tiles). TheMG3 reader (decoder) class allows the user to inspect the type and
geographic extent of each tile in a composite image, and any subset of the tiles may be specified
when opening the composite image for decoding. Internally, the SDK handles the logic of mosaicking
the specified tiles together.

The key new features of MG4 are:

l multispectral (and hyperspectral) support
l alpha band support
l improved composite mosaicking (embedded overviews, multiresolution support)

Support for multispectral imagery in MG4 enables users to compress 4-band NAIP data, 8-band
Landsat data or even 224-band AVIRIS data, losslessly or with LizardTech's usual high-quality
visually lossless compression. TheMG4 format also adds support for alpha bands, enabling users
with shapefiles defining the boundaries of their image data to perform more complex mosaicking
operations than ever before. Embedded overviews mean that decodingMG4 composites takes less
time. Finally, MG4 composites can contain source tiles of differing resolutions.

For more information see "Key Features of MrSID" on page 28.

- 27 -

MrSID Decode SDK9.5 for Raster – User Manual

Differences Among the MG2, MG3, and MG4 Formats

As theMrSID technology has evolved over the years, the range of capabilities supported has evolved
as well. Specifically:

l MG2 does not support lossless compression
l MG2 does not support optimization
l MG2 does not support composite images
l MG3 does not support 32-bit floating point data
l Only MG4 supports signed integer data
l Only MG4 supports alphamasking
l Only MG4 offers support for multispectral and hyperspectral imagery
l While MG3 composite mosaics can contain MG2 files, MG4 composite mosaics must be
made up of only MG4 files.

l While bothMG3 andMG4 allow creating flat mosaics using source tiles of different
resolutions, only MG4 allows different resolutions in source tiles for composite mosaics.

While some applications may only write newer versions of theMrSID format, all applications that
readMrSID files will always continue to support all versions of the format. These considerations are
important to keep inmind, since there are somany older MG2 andMG3 files kept in long-term
archives.

Key Features of MrSID
In this section we describe in more detail some of the features and capabilities of theMrSID
technology for raster image data.

NOTE: TheMrSID format also supports LiDAR data, but a separate set of tools and libraries is
used in supporting LiDAR data in theMrSID format, and separate documentation is available in your
installation for integrating support for LiDAR-encodedMrSID files.

Datatypes and Formats
TheMrSID technology is agnostic with respect to the input file format, as long as the input pixel data
meets certain datatype requirements. This means that MrSID files can be generated from a variety of
data sources including GeoTIFF, Imagine, and ECW.

TheMrSID technology supports most data types used in geospatial raster imagery today: up to 16
bits per sample (signed or unsigned). MG2 andMG4 also support floating point data. Raster image
data is almost always represented using unsigned integers. Digital elevationmodels and file formats
like DTED, however, often use a signed integer representation, and so to support situations where
our users want to compress these sorts of datasets, or perhaps use terrain models as base layers for
their visualizations, MrSID supports signed integer data of up to 16 bits.

TheMrSID technology also supports 1-band grayscale, 3-band RGB, and 1- to 255-band
multispectral or hyperspectral imagery.

Image Quality
As discussed above, MrSID technology offers excellent image quality for a given file size target.

- 28 -

MrSID Support

l Numerically lossless: This level of compression typically yields a 2:1 compression ratio, for a
50% reduction in storage space. Lossless compression should be used when it is critical that
all bits of the original image be preserved. This is the case for archival storage, as well as for
uncommonworkflows where no possible loss of precision is ever acceptable. Youmay also
wish to use lossless compression when you are generating a “master” image from which other
derivative images will bemade, as through theMrSID optimization process described below.

l Visually lossless: This level of compression is typically 20:1 for RGB and 10:1 for grayscale
imagery. This is themost common level of compression quality used, as it preserves the
appearance of the imagery for most workflows, including use of your imagery as a background
layer and for many forms of visual analysis and exploitation.

l Lossy: Beyond 20:1, image degradation and artifacts can appear, although often not too
significantly until ratios of 40:1 or 50:1. Such lossy quality may be acceptable when the
imagery is used only as a background layer for appearance or when the image quality is less
important than the storage size or speed, such as for informal visual inspections.

Performance
When considering performance, we usually consider the cost of running some process, such as
compression or decompression, in terms of memory usage, CPU usage, and I/O bandwidth. The
MrSID technology is designed with these concerns in mind.

Compression

When dealing with very large images, many image processing algorithms first partition the image into
tiles and then process each tile independently. This allows the computation to proceed without
slowing down due to excessive paging of memory to disk. However, especially in the case of
compression algorithms, such tiling can introduce artifacts in the resulting image because the
algorithms cannot efficiently process cross-tile regions. MrSID technology is specifically designed to
process imagery whose size is larger than the amount of RAM available on themachine without
resorting to tiling schemes and therefore without introducing any tiling artifacts.

Decompression

When decompressing imagery, themost common use case is for viewing, whichmeans extracting
out scenes – only some subsets or regions of the image are needed at any one time. With the
multiresolution support inherent in theMrSID format, the viewing applicationmay first decide the
resolution level needed to display the scene at some physical screen resolution and then extract only
the resolution levels needed; this significantly improves disk I/O time and lowers the amount of
imagery the CPU must process. Additionally, the viewer need only request those portions of the file
that correspond to the region of interest; the entire image (at the given level) need not be processed,
again saving I/O bandwidth and processing time.

When decompressing the entire image is required, the performance of the decompression step is
roughly comparable to that of the earlier compression step: again, MrSID technology is designed to
run within reasonable amounts of RAM, even for large datasets. If lossy compression was used, the
decompression will be somewhat faster since there is correspondingly less data being read in and
processed.

- 29 -

MrSID Decode SDK9.5 for Raster – User Manual

Optimization
Formost users, the typical image compression workflow consists of a compression followed by one
or more decompressions, either for viewing (small decodes) or for bringing the image back into some
other format for some other tool or purpose (large decodes), as shown in the top line of Figure 1. In
many cases, however, the need for the large decode step can be reduced.

Once an image is in theMrSID format, a new MrSID file can be generated from it without resorting to
a decode followed by a re-encode – this means you can generate derivative products from a single
source, as shown in the bottom of Figure 1. This is referred to as “optimizing” the image.

For example, a data provider might create and archive a lossless MrSID file to use as a “master”, and
then as customer requests come in, that master copy can be used to quickly generate new MrSID
files that fit a variety of needs:

l aMrSID file with a lower baseline resolution – for example, resolution levels can be removed if
only one foot per pixel resolution is needed from a six-inch resolution image

l aMrSID file requiring less storage space – for example, 20:1 compression can be used to fit
the image onto a CD or DVD

l aMrSID file containing less area – for example, a scene containing only a certain
neighborhood can be extracted from an image covering a whole city

Again, to meet these three different requirements (or perhaps some combination of them) only one
fast step is required to generate a new MrSID file from the original MrSID file. There is no need to
decode the entire image first.

Metadata
BecauseMrSID is a geospatial data format, MrSID files also include geospatial referencing
information such as the coordinate reference system (CRS), the geographic extents (corner points) of
the image, and the pixel resolution.

This metadata is an inherent part of theMrSID file format and is based on the well-knownGeoTIFF
tag scheme. When performing a reprojection operation or one of the optimization steps described
above, themetadata is updated to reflect the properties of the derived image: when performing scale
reduction, for example, the resolutionmetadata is updated accordingly.

MrSID metadata also is used to record what operations may have been performed on your dataset.
For example, you can determine if the file you have still corresponds to the lossless original data or if
it has beenmodified in someway.

This native geographic metadata support allows you use a third-party application to import your
MrSID imagery for use as a basemapwith other georeferenced datasets youmight have.

- 30 -

MrSID Support

Multispectral Support
Formany years, some types of geospatial data have includedmore than just the usual three color
(RGB) bands. Only recently, however, have these kinds of multispectral datasets started to be widely
available to GIS users. For example, in 2011, USDA’s NAIP program plans to collect data for 15
states which will contain the red, green, and blue (RGB) bands plus a fourth infrared (IR) band.
DigitalGlobe’s recently launchedWorldView 2 satellite records RGB plus five additional bands: a
yellow band, two IR bands, and two “coastal” bands. NASA's MODIS now collects 36 bands. Other
remote sensing platforms are now collecting hyperspectral datasets, typically one hundred or more
narrow bands. All these additional bands are chosen for their abilities to improve feature classification
and extraction by providingmore discriminating information in areas such as vegetation cover,
shallow-water bathymetry, andman-made features.

To support these new, richer datasets, theMG4 format can compress images with up to 255 bands.
The same key features are still available: lossless and lossy encoding, multiple resolution levels, and
selective decoding.

As more data is being encoded and decoded, of course, more time will be required. The figure below
shows the relative performance of encoding 5Kx5K pixel images with 1, 2, 4, 8, 16, and 32 bands of
data: the time required scales linearly, when normalized to the number of bands. That is, if it takes 1
minute to encode a 1-banded image, it will take 10minutes to encode an 10-banded image of the
samewidth and height.

The time required to decode imagery with varying numbers of bands scales similarly. However, many
users of multispectral imagery only view one or perhaps three of the bands at a time, mapping the
bands into the familiar grayscale or RGB space. In the sameway that theMrSID algorithms will
perform selective decompression for viewing only the scene of interest, they will also decode only the
bands of interest. The figure below shows the relative time it takes to decode 1-, 2-, and 4-band
scenes from images with 1, 2, 4, 8, 16, and 32 bands of data: the time required does not depend on
the number of bands. More concretely, if it takes 1minute to extract a single band from 1-banded
image, it will take only 1minute to extract a single band from a 10-banded image of the same
width/height.

- 31 -

MrSID Decode SDK9.5 for Raster – User Manual

Alpha Bands
In previous versions of theMrSID format, nodata regions were indicated by a sentinel pixel value,
typically black. Whenmosaicking tiles together, nodata regions would be used to indicate how to
“combine” one image on top of another. Users who have worked with MrSID images in the past,
however, may have noticed a problem with this. A black nodata pixel, represented by (0,0,0) might be
slightly changed when subjected to lossy compression. The value (0,0,0) might change to (1,0,2) or
(0,2,0) – by itself visually indistinguishable from black, but in amosaicking context it is no longer the
nodata sentinel value and so in the worst case this might have caused “speckling” artifacts to appear.

TheMG4 format uses an alpha band instead of a single nodata pixel value to indicate which areas of
the image do not have valid data. When encoding existing imagery, users indicate which pixel value
corresponds to nodata and amask is created corresponding to those values. Subsequent mosaicking
operations then use that mask to determine how to combine tiles. Lossy compression no longer
affects this process, because while the putative nodata pixels might get slightly changed, the alpha
mask is always kept lossless and is always honored by the decoders.

The alpha band is treated just like the other bands in the image, such as the RGB bands, except that
it is never subjected to any lossy compression. Because the alpha band contains relatively simple
sequences of data – very long runs of ones or of zeros – it compresses losslessly extremely well and
little or no overhead will be noticeable in your MrSID files.

Tiling and Composites
Many of our customers have a single MrSID file which covers a large geographic region. With the
ability of theMrSID technology to composite multiple MrSID files together, you can have oneMrSID
file that is made up internally of dozens of MrSID files serving as image tiles.

As new MrSID tiles are acquired – such as from amore recent flight, perhaps with higher accuracy
data – these tiles can be easily added to the existingMrSID composite image. Because only MrSID
files are involved, this process does not require any decompression or compression steps and so can

- 32 -

MrSID Support

be done very quickly. When displaying the data, the new tiles’ data will correctly layer on top of the
older data. Additionally, the overview tile is automatically updated to account for the new tiles.

There are several important differences betweenMG3 composites andMG4 composites.

l In MG3 format you can also combineMG2 files in your composite image, whereas MG4
composites restrict input to MG4 files.

l MG4 composite images are created with a special overview tile, so even files consisting of
hundreds of tiles can be quickly viewed at lower resolutions which spanmultiple tiles.

l MG4 composite images can be composed of files of multiple resolutions.

MrSID Readers
TheMrSID SDK provides a class for readingMrSID imagery. The MrSIDImageReader class
supports reading from any MrSID image, MG2, MG3 orMG4. (If the image is a composite, all tiles in
the image will be used.) This class provides an interface for querying the tile contents of composite
images.

This class supports both stream inputs as well as filenames. The ability to control whether world files
are honored is also provided.

The class has initialization parameters to control resource usage by the object. The “memory usage”
parameter allows the user to choose to usemorememory to hold theMrSID data in memory, for
improved performance at the cost of higher memory usage. By limiting thememory usage, certain
decode operations may be slower but more images may be opened simultaneously.

Similarly, the “stream usage” parameter allows the user to choose to keep the underlying file handle
(or stream) always open or open only when required by the decoder. The always-openmodemay
reduce file I/O overhead, but at the cost of potentially critical resources (file handles) on some
systems.

By default, this class uses multiple threads to perform decoding operations. The class includes a
setMaxWorkerThreads() function that you can use tomodify the number of threads created. For
more information, see "Multi-Threading" on page 17.

- 33 -

JPEG 2000 Support
JPEG 2000 is the state-of-the-art successor to the popular JPEG compression standard. The original
JPEGwas based on the discrete cosine transform (DCT) and Huffman encoding and is not suitable
for current workflows relying on high quality imaging, lossless encoding, or very large images.

Algorithmically JPEG 2000 andMrSID (MG3 andMG4) are very similar. Both are wavelet-based
systems which use arithmetic encoding to support lossless compression, image optimization
workflows, and selective decoding by quality, resolution, and region. Details of the algorithms and the
underlying file formats are, however, quite different; MrSID and JPEG 2000 data and files are not
interchangeable.

As JPEG 2000 is an international standard (ISO/IEC 15444), an increasing variety of products can
create, read, and work with JPEG 2000 imagery. By using theMrSID SDK to encode and decode
your imagery, your applications will bemore valuable in open standards environments.

TheMrSID SDK supports reading Geography Markup Language (GML) in JPEG 2000 files. When you
decode a JPEG 2000 image that contains GML, you can extract the coordinate reference system
stored in GML.

NOTE: JPEG 2000 is an extremely complex framework for managing compressed imagery, with a
correspondingly complex set of encoding options. The choice of encoding parameters you should
use will depend greatly on your performance requirements and anticipated workflows. See
LizardTech’s developer website (http://developer.lizardtech.com/) for current information.

The JPEG 2000 Reader
The J2KImageReader class is used to read JPEG 2000 files or streams.

This class supports a number of query functions to find information about how the image was
encoded with JPEG 2000, as well as some decode-time functions to control how the image will be
decoded. Please consult the ReferenceManual at doc/ReferenceManual/index.html for
details.

NOTE: The J2KimageReader class cannot be used to read “old-style” JPEG files.

- 35 -

http://developer.lizardtech.com/

NITF Support
The National Imagery Transmission Format (NITF) standard was created by the Department of
Defense as ameans of formatting digital imagery and imagery-related products and exchanging them
amongmembers of the intelligence community, the Department of Defense (DOD), and other
government departments and agencies. NITF was created partly because government agencies
needed a single common image representation that supported certain metadata features and
workflows. While it is called an image format, NITF is more precisely described as a file format that
wraps one or more image files and their correspondingmetadata.

The DSDK supports reading NITF files and includes the following features:

1. support for image segments with JPEG and JPEG 2000 compression
2. some support for files containingmultiple image segments
3. some support for TRE data

NOTE: Text, label, and symbol segment types are not supported.

Important Notes On NITF Compliance in the MrSID SDK

This version of theMrSID SDK follows the following NITF standards:

1. versions 2.1 (MIL-STD-2500C, Draft April 2004) and 2.0 of the NITF file format for reading
2. the BIIF Profile (BPJ2K01.00, Draft January 2004) including the J2KLRA TRE

NITF v1.1. files are not supported.

Some of these NITF standards are not yet ratified; future SDK releases will track the evolution of
these standards to ensure interoperability.

The architecture of the NITF classes may change in a future release, so as to provide simpler and
more efficient access to NITF features such as multiple image segments and TRE data.

Themotivated reader may wish to learnmore in "Georeferencing of NITF Imagery" on page 81.

The NITF Reader
The NITFImageManager and NITFImageReader classes are used to read NITF files.

Unlike the other image readers, the NITFImageManager class must be used to construct an
NITFImageReader object for a given image segment via the createReadermethod. The
NITFImageReader object behaves like any other image reader in all other respects. The Reference
Manual at doc/ReferenceManual/index.html contains several examples of how to read an
NITF image.

The following restrictions apply to the reading of NITF imagery:

l Only uncompressed (raw), simple JPEG, and JPEG 2000 segments are supported. (Note:
JPEG files with explicit quantization tables are not supported.)

l All modes (blocked, masked, etc) are supported.

- 37 -

MrSID Decode SDK9.5 for Raster – User Manual

l Images must be of datatypes, colorspaces, etc, that the SDK normally supports (typically
unsigned 8- and 16-bit data, of 1, 3, or n bands).

l Color lookup tables (LUTs) are not supported.
l All CLEVELs are supported.
l Label, text, graphic/symbol, DES, and RES segments are recognized and parsed, but access
to the data within them is not supported.

l When reading a NITF image, all file header and image segment fields are stored in the
metadata for the image (see "NITF Input Metadata" on page 38).

l Each TRE is read and stored as a single binary metadata tag/value pair (again, see "NITF
Input Metadata" on page 38). Some TREs are recognized, however, and have their constituent
fields extracted into tag/value pairs as well, including: J2KLRA, USE00A, STDIDC, PIAIMC,
and RPC00A/B.

NITF Input Metadata

NOTE: The following discussion assumes familiarity with the NITF specification.

When reading a NITF file, the SDK stores many NITF fields as metadata, for example as tag/value
pairs in MrSID imagery (see "Metadata Tags" on page 84).

In general, the tag name is of the form

NITF::xxnnn::field

where xx is a two letter code representing the NITF segment (IM for image, FH for file header) and
nnn is the NITF segment number. TRE fields contain the prefix "TRE_". Specifically, the SDK stores
input fields in metadata tags as described in the following tables.

File Header Fields

The SDK stores file header fields in the following tags:

NITF Field GeoExpress Tag

FHDR NITF::FH000::FHDR

FVER NITF::FH000::FVER

STYPE NITF::FH000::STYPE

OSTAID NITF::FH000::OSTAID

FDT NITF::FH000::FDT

FTITLE NITF::FH000::FTITLE

ONAME NITF::FH000::ONAME

OPHONE NITF::FH000::OPHONE

File Header Fields

- 38 -

NITF Support

NITF Field GeoExpress Tag

NUMI NITF::FH000::NUMI

NUMS NITF::FH000::NUMS

NUML NITF::FH000::NUML

NUMT NITF::FH000::NUMT

NUMDES NITF::FH000::NUMDES

NUMRES NITF::FH000::NUMRES

Of the above, the SDK allows the user to set the values for OSTAID, FDT, FTITLE, ONAME, and
OPHONE when encoding NITF images.

Security-Related Fields

The SDK stores security-related fields from the file header (unless they are blanks) in the following
tags:

NITF Field GeoExpress Tag

SCLAS NITF::FH000::SCLAS

SCLSY NITF::FH000::SCLSY

SCODE NITF::FH000::SCODE

SCTLH NITF::FH000::SCTLH

SREL NITF::FH000::SREL

SDCTP NITF::FH000::SDCTP

SDCDT NITF::FH000::SDCDT

SDCXM NITF::FH000::SDCXM

SDG NITF::FH000::SDG

SDGDT NITF::FH000::SDGDT

SCLTX NITF::FH000::SCLTX

SCATP NITF::FH000::SCATP

SCAUT NITF::FH000::SCAUT

SCRSN NITF::FH000::SCRSN

Security-Related Fields

- 39 -

MrSID Decode SDK9.5 for Raster – User Manual

NITF Field GeoExpress Tag

SSRDT NITF::FH000::SSRDT

SCTLN NITF::FH000::SCTLN

The SDK allows the user to custom set all of the above.

Image Segment Fields

The SDK stores image segment fields in the following tags:

NITF Field GeoExpress Tag

IID1 NITF::IM001::IID1

IDATIM NITF::IM001::IDATIM

TGTID NITF::IM001::TGTID

IID2 NITF::IM001::IID2

ISORCE NITF::IM001::ISORCE

ICORDS NITF::IM001::ICORDS

IGEOLO NITF::IM001::IGEOLO

NICOM NITF::IM001::NICOM

ICOM1 NITF::IM001::ICOM1

... ...

ICOM9 NITF::IM001::ICOM9

Image Segment Fields

The SDK allows the user to custom set these image segment fields: IID1, IDATIM, TGTID, IID2,
ISORCE, NICOM, ICOM1...ICOM9.

Additional Notes

In addition, the SDK does the following:

l handles the security fields in the Image Segment as they are handled in the file header
l stores all detected TREs inmetadata as binary data. For example, USE00A data would be
stored as an array of bytes using the following tag:

NITF::IM001::TRE_USE00A

l explicitly recognizes the following TREs when reading in a NITF file:

J2KLRA, USE00A, STDIDC, PIAIMC, RPC00A/B

- 40 -

NITF Support

For these TREs, additional metadata entries are created corresponding to each of their
constituent fields. For example, PIAIMC data is represented as follows:

NITF::IM001::TRE_PIAIMC_CLOUDCVR
NITF::IM001::TRE_PIAIMC_SRP
NITF::IM001::TRE_PIAIMC_SENSMODE
NITF::IM001::TRE_PIAIMC_SENSNAME
...

- 41 -

Metadata Support
Metadata is data about an image, as distinct from the actual image data (pixels). This includes
everything from the basic width/height and datatype information up to geospatial information,
background colors, creation dates, etc.

TheMrSID SDK uses a key/value pair system for recording tags and their values, similar to the
system used by TIFF andGeoTIFF. A “metadata database” containing a set of records, one for each
key/value pair, is associated with each image. This chapter describes the basic features and classes
of this metadata system.

Themetadata classes can all be found in the headers in the include directory. Full details and
examples may be found in the ReferenceManual at doc/ReferenceManual/index.html.

The Metadata Record
A single key/value pair is represented by the LTIMetadataRecord class. This class has several
properties:

l tag name
l datatype
l dimension information (number of dimensions and dimension array)
l data pointer

The tag name is represented as an ASCII string. The well-known strings (those for commonmetadata
tags) have corresponding values in the LTIMetadataTag enum. Either form may be used for most
metadata operations.

The dimension information describes the “shape” of the data element(s), which is pointed to with a
void* pointer.

l If the data is a single value (scalar), the number of dimensions is 1 and the dimension array is a
one-element vector whose entry is one, i.e. int dims[1] = { 1 }.

l If the data is a vector of values, the number of dimensions is 1 and the dimension array is a
one-element vector whose entry is the number of the values, i.e. int dims[1] = { 10 }
for a 10-element data record.

l If the data is an arbitrary vector of values, the number of dimensions is n and the dimension
array is an N-element vector whose entries are the lengths of each dimension, i.e. int dims
[2] = { 4,5 } for a 20-element data record formatted as a 4x5 array of values.

In all cases, the data values will all have the same data type. The void* pointer is cast to the
appropriate type and dereferenced accordingly to access the true value.

The LTIMetadataRecord class contains a number of helper functions to get and set the data
values.

The class LTIMetadataDumper can be used to pretty print a metadata record as a development
and debugging aid.

- 43 -

MrSID Decode SDK9.5 for Raster – User Manual

The Metadata Database
Each image stage has an associated LTIMetadataDatabase object. This database supports
several types of operations:

l query for a record
l add a record
l retrieve a record
l remove a record

Records may be accessed via tag name or (positional) record number.

Each image stage is responsible for maintaining the consistency of its own database. For example, if
an image filter changes the width of its image, the correspondingmetadata tagmust be updated in the
local copy of the database. In most situations themetadata database for an image pipeline should be
considered to be the database presented by the last stage.

The class LTIMetadataDumper can be used to pretty print a metadata database as a development
and debugging aid.

The Tags
Certain metadata tags are set by almost all image stages and are known as the “classical” metadata
tags:

l width and height
l datatype
l colorspace
l dynamic range
l background and nodata pixel values
l geospatial (x,y) origin, x- and y-resolution, and rotation
l original file size
l original filename

The corresponding image tag names can be found in the LTIMetadataTag enum. See "Metadata
Tags" on page 84 for further details.

- 44 -

The C API
TheMrSID SDK is a large set of C++ classes containingmany features and designed for many
different needs and workflows. There is a corresponding cost in learning and development time to
working with the full SDK.

Recognizing this cost, the SDK also provides a small, C-based API for developers who wish to
quickly implement or prototype simple decode support for MrSID, JPEG 2000 and NITF images.

The C API provides the following features:

l decode support for MrSID, JPEG 2000 and NITF
l basic metadata access
l file-based and stream-based decodes
l BSQ format output

Major features not available through the C API include:

l access to the image pipeline architecture (readers, filters, writers)
l support for other file formats
l encode support
l progress and interrupt delegates

NOTE: The C API is built on top of the C++ API. Although the linkage is done with C names, use of
C++ runtime libraries is still required.

This chapter describes the basics of the C API, as implemented in the two files ltic_api.h and
lt_ioCStream.h, in the include directory. The ReferenceManual at
doc/ReferenceManual/index.html contains complete details and examples.

Image Support
The functions for opening and closing existingMrSID, JPEG 2000 and NITF images are:

l ltic_openMrSIDImageFile()
l ltic_openMrSIDImageStream()
l ltic_openJP2ImageFile()
l ltic_openJP2ImageStream()
l ltic_openNITFImageFile()
l ltic_closeImage()

These functions all take either a filename or a stream, denoting the input, and a pointer to an “image
handle” of type LTICImageH. This handle is used to provide the context for all other functions in the
C API. Returned status codes are used to indicate success or failure.

To close an image, the ltic_closeImage() function is used.

Due to rounding and file format differences, you should not manually calculate the image dimensions
at magnification. Instead, you should use the ltic_getDimsAtMag() function to ask the SDK for
the dimensions of the image at a givenmagnification.

- 45 -

MrSID Decode SDK9.5 for Raster – User Manual

Basic image properties such as width, height, colorspace, geospatial position, etc, are accessed
using simple query functions. For example, the width of an image is determined by calling this
function:

lt_int32 ltic_getWidth(const LTICImageH image)

Decode Support
To decode a scene from an image only one function call is required:

LT_STATUS ltic_decode(LTICImageH image,
xxxxxxxxxxxxxxxxxxxxxxdouble xUpperLeft,
xxxxxxxxxxxxxxxxxxxxxxdouble yUpperLeft,
xxxxxxxxxxxxxxxxxxxxxxdouble width,
xxxxxxxxxxxxxxxxxxxxxxdouble height,
xxxxxxxxxxxxxxxxxxxxxxdouble magnification,
xxxxxxxxxxxxxxxxxxxxxxvoid** buffers)

Note that this function closely approximates the C++ API for read operations: the five double
arguments correspond exactly to an LTIScene object and the buffers argument is a pointer to an
array of band buffers, corresponding to the constructor of an LTISceneBuffer object.

Only “packed BSQ” output is available using the C API.

Metadata Support
Themetadata of an image is accessed via two functions. The ltic_getNumMetadataRecords()
function returns the number of metadata records in the image. The ltic_metadataRecord()
function is used to extract the actual data values of a specific record.

As with the ltic_decode() call, the parameters to the ltic_getMetadataRecord() function
closely mimic their C++ SDK counterparts in the LTIMetadataDatabase class.

Streams
An imagemay be opened either with a filename (const char*) or a stream. TheMrSID SDK provides a
class derived from LTIOStreamInf, called LTIOCallbackStream, which is designed for third-
party streams and stream-like data structures.

The file lt_ioCStream.h contains a set of C interfaces for constructing an
LTIOCallbackStream object. The lt_ioCallbackStreamCreate() takes as parameters a
set of function pointers corresponding the operations for opening, closing, reading, writing, etc, as is
required by the LTIOCallbackStream class. The functions lt_ioCStreamOpen(), lt_
ioCStreamRead() etc., all invoke the underlying LTIOStreamInfmethods for the
LTIOCallbackStream object.

Full details and examples may be found in the ReferenceManual at
doc/ReferenceManual/index.html.

- 46 -

Command Line Applications
Several simple command line applications are included in this SDK to aid in development and testing.

Switches Common to All Tools
The following switches are common tomrsidinfo, mrsiddecode, mrsidencode, mrsidoptimize and
mrsidtile.

-h or -?
Show short usagemessage

-help

Show detailed usagemessage

-v or -version
Show version information

-credits

Show credits and copyrights

-quiet

Don't show informational messages. This does not affect the logfile output.

-log STRING

Write output to log file. This does not affect the stdout output.

-progress STRING

Progress meter style: none | default | timer

If the environment variable LT_NITF_IMAGENUM is set to a number, the NITF decode applications
(mrsiddecode, mrsidinfo, mrsidviewer) will attempt to open only the image with the segment number
given by the environment variable. Note that image segments are numbered starting at 1, not zero.
The default is to attempt to open all segments as amosaic of images.

mrsidinfo
Themrsidinfo tool displays basic information about an image, such as width, height, etc. Various
image formats are supported.

- 47 -

MrSID Decode SDK9.5 for Raster – User Manual

File Control

-if or -inputFormat STRING

Input image type: tif | ras | jpg | nitf | doq | doq_nc | bbb | lan | bmp
| img | jp2 | sid

-mos or -mosaic
Image format is mosaic (aux file)

Main Switches

-cralpha or -crWithAlpha

include alpha band in compression ratio calculation.

-meta or -metadata
Show metadata tags and values

-tile or -tiles
Show tile information (composite MG3 orMG4 only)

-wf or -worldFile
Generate world file

-dims or -projectDims
Show image dimensions at various resolution levels

-input or -inputFile STRING

Name of input file (required)

-gml or -gmljp2
Show embeddedGML information including schemas and custom coordinate reference system
information

-prof or -genProfile STRING

Generate JP2 profile

-ignorewf or -ignoreWorldFile
Iignore georeferencing from world files

- 48 -

Command Line Applications

-wkt

Dump theWell Known Text

-aoi

Dump all AOI info

Examples

In the following example, the command displays the basic image information for aMrSID image
named image.sid:

mrsidinfo image.sid

In the following example, the command line displays the basic image information and themetadata
for a TIFF image named foo.tif:

mrsidinfo –meta foo.tif

In the following example, the command line displays metadata information for an AUX file containing
JPEG format images named mosaic.txt:

mrsidinfo –mos –if jpg mosaic.txt

mrsiddecode
Themrsiddecode tool extracts (decodes) all or a portion of aMrSID or JPEG 2000 image to one of
several image formats.

Switches
File Control

-i or -inputFile STRING

Input file (required)

-o or -outputFile STRING

Output file (required)

-of or -outputFormat STRING

Output image format: tif | tifg | jpg | bip | bil | bsq | bmp

-if or -inputFormat STRING

Input image format

- 49 -

MrSID Decode SDK9.5 for Raster – User Manual

-mos or -mosaic
Image format is mosaic (aux file)

Main Switches

-j or -numThreads

Sets the number of available threads used while processingMG3 andMG4 files. If no value is
specified, the number of threads is set to themaximum. For more information, see "Multi-
Threading" on page 17.

-watermarkFile STRING

Watermark file

-watermarkPosition STRING

Position of watermark: center | center_left | center_right | upper_left |
upper_center | upper_right | lower_left | lower_center | lower_right
(default)

-drmin or -dynRangeMin FLOAT

Minimum dynamic range

-drmax or -dynRangeMax FLOAT

Maximum dynamic range

-drauto or -autoDynRange
Automatic dynamic range adjustment

-wf or -worldFile
Generate world file

-sh or -stripHeight UNSIGNED-INT

Strip height

-endian STRING

Endianness (BBB output only): host | little | big

-bsq

- 50 -

Command Line Applications

Output is BSQ (BBB output only)

-bgc or -backgroundColor STRING

Set background color

-tpc or -transparencyColor STRING

Set transparency color

MrSID Options

-pwd or -password STRING

password to decode image (MG2 andMG3 only)

-b or -bandList STRING

a comma separated list of band to decode (MG4 only)

JPEG 2000 Options

-layers or -qualityLayers UNSIGNED-INT

Number of quality layers

-prec or -precision UNSIGNED-INT

bits of precision in output

Scene Selection

-ulxy FLOAT0 FLOAT1

Upper-left of scene (x,y)

-lrxy FLOAT0 FLOAT1

Lower-right of scene (x,y)

-cxy FLOAT0 FLOAT1

Center of scene (x,y)

-wh FLOAT0 FLOAT1

- 51 -

MrSID Decode SDK9.5 for Raster – User Manual

Size of scene (width,height)

-s or -scale SIGNED-INT

Scale of scene

-coord or -coordspace STRING

Coordinate space of scene: geo | image

Examples

To decode a MrSID file to a JPG file:

mrsiddecode -i input.sid -o output.jpg

To decode a MrSID file to a GeoTIFF file:

mrsiddecode -i input.sid -o geotiff.tif -of tifg

To decode the upper-left 50x50 pixel scene from a JPEG 2000 image:

mrsiddecode -i input.jp2 -o output.tif -ulxy 0 0 -wh 50 50

To decode an image at scale 2, i.e. one-quarter resolution:

mrsiddecode -i input.jp2 -o output.tif -s 2

Some Definitions
Let us define "input scene" (or just "scene") to be the portion of theMrSID image to be decoded. The
scenemay be the whole image or some subset. The scenemay extend "outside" of the image proper.

Let us also define "output window" (or just "window") to be the region occupied by the image produced
by the decoder, e.g. the generated TIFF. Note that the output window may not be the same size as
the input scene.

Finally, let us define "coordinate space" to refer to one of two possible ways of specifying regions of
the image:

l image space: what we normally think of as "pixel" space, at full resolution
l geo space: the image's geographic space

Basic Scene Selection

The command line decoder allows you to specify the input scene explicitly in one of three ways:

l upper-left (x,y) corner of scene, and (width,height) of scene

-ulxy X Y -wh W H

l upper-left (x,y) corner of scene, and lower-right (x,y) corner of scene

- 52 -

Command Line Applications

-ulxy X Y -lrxy X Y

l center (x,y) of scene, and (width,height) of scene

-cxy X Y -wh W H

For example, consider a 100x100 image. To select the upper-left quarter of the image, the following
three ways are equivalent:

-ulxy 0 0 -wh 50 50
-ulxy 0 0 -lrxy 49 49
-cxy 25 25 -wh 50 50

(The reader is strongly encouraged to work these examples throughmanually, to ensure full
understanding of thematerial being presented.)

Note that if no scene is specified, the decoder defaults to the entire image.

Scaled Scene Selection

Consider again the 100x100 image. At scale 1 (half-resolution), this is a 50x50 image. To decode the
same upper-right quarter at half-res -- a 25x25 image -- these three are equivalent (modulo round-off
errors):

-s 1 -ulxy 0 0 -wh 25 25
-s 1 -ulxy 0 0 -lrxy 24 24
-s 1 -cxy 12.5 12.5 -wh 25 25

The first form is straight-forward: it just says make a scale 1 image, starting at the upper-left corner,
of size 25x25. The second form is also clear: make a scale 1 image, starting at the upper-left corner
and extending down to (24,24).

And the third form is really just a variation of the first: make a scale 1 image, centered at (12.5,12.5),
of size 25x25...

Input Scenes and Output Windows

Recall that in the definitions above, we noted the output window may be different than the input
scene. Here's how that can happen.

Consider the following decode on our 100x100 image:

-s 0 -ulxy 0 0 -wh 125 125.

This is a normal scale 0 decode, but the output window is 125x125 -- considerably larger than our
input scene. The result is an image that really is 125x125, with the right and bottom edges left as
black (technically, the background color).

One could reasonably argue that allowing the user to specify a decode "outside the image" is a bug,
but for an end-user app it's actually a nice feature to have: it lets the user extract out some arbitrarily-
sized region of her image, but turn it into amore well-formed size. The classic example of this feature
is a decode along these lines:

-s 4 –ulxy 0 0 -wh 32 32

- 53 -

MrSID Decode SDK9.5 for Raster – User Manual

which extracts the scaled image into a stock 32x32 icon (we assume here that the scale 4 image is of
some size less than or equal to 32x32, otherwise they'd have to use a smaller scale).

The input scene is always positioned in the upper-left corner of the output window -- unless you are
using the -cxy scene selectionmechanism, in which case the input scene is always positioned in
the center of the output window.

Geo Coordinate Spaces

The above examples are all done in the familiar "pixel space", where (0,0) is the upper-left corner and
the lower-right corner is (width-1,height-1) and each pixel is a 1x1 object. We call this "image" space
and it is the default.

For geo images, however, we often prefer to express points on the image and dimensions in terms of
geo coordinates. That is, the upper-left might be (32929.00,28292.25) and the size of the pixel might
be (0.0005,0.0005).

To accomodate this, we allow the above scene selections to be done in "geo" space. If our 100x100
image had an upper-left coordinate of (100.0,50.0) and an (x,y) resolution of (10.0,5.0), we would use
the following to decode the whole image:

-coord geo -ulxy 100 50 -wh 1000 500

That is, the input scene starts at the upper-left position of (100.0,50.0) and the output window is the
full size of the input image (100*10=1000 and 100*5=500).

More Examples
To conclude, the examples within each of the following groups of scene selections using our 100x100
image with UL=(100,50) and res=(10,5) are all equivalent.

Full scene, full res (100x100 image, all picture at full res)

-ulxy 0 0 -wh 100 100 -s 0 -coord image
-ulxy 0 0 -lrxy 99 99 -s 0 -coord image
-cxy 50 50 -wh 100 100 -s 0 -coord image
-ulxy 100 50 -wh 1000 500 -s 0 -coord geo
-ulxy 100 50 -lrxy 1090 -445 -s 0 -coord geo
-cxy 600 -200 -wh 1000 500 -s 0 -coord geo

Part scene, full res (50x50 image, UL quarter of image at full res)

-ulxy 0 0 -wh 50 50 -s 0 -coord image
-ulxy 0 0 -lrxy 49 49 -s 0 -coord image
-cxy 25 25 -wh 50 50 -s 0 -coord image
-ulxy 100 50 -wh 500 250 -s 0 -coord geo
-ulxy 100 50 -lrxy 590 -195 -s 0 -coord geo
-cxy 350 -75 -wh 500 250 -s 0 -coord geo

Full scene, half-res (whole image at half res, in UL quadrant of 100x100 image)

-ulxy 0 0 -wh 100 100 -s 1 -coord image
-ulxy 0 0 -lrxy 99 99 -s 1 -coord image
-ulxy 100 50 -wh 1000 500 -s 1 -coord geo
-ulxy 100 50 -lrxy 1090 -445 -s 1 -coord geo

- 54 -

Command Line Applications

Full scene, half-res (centered) (whole image at half res, in center quadrant of 100x100 image)

-cxy 50 50 -wh 100 100 -s 1 -coord image

Full scene, half-res (centered) (whole image at half res, in center of a 50x50 image)

-cxy 600 -200 -wh 1000 500 -s 1 -coord geo

mrsidviewer
Themrsidviewer application is a very simpleWindows application for viewing images in all of the
formats supported by the SDK, includingMrSID and JPEG 2000.

NOTE: Themrsidviewer application is available onWindows SDKs only.

Operations

l zoom in: left-click
l zoom out: shift + left-click
l pan: right-click and drag

The viewermay be invoked from the command line:

C:\>mrsidviewer image.sid

Normal drag and drop operations are also supported.

The (classical) metadata for the image can be displayed via theOptions | Metadatamenu item.

- 55 -

Appendix A - Technical Notes
This chapter contains several articles providing background information on specific issues and
questions frequently asked by some SDK developers. Please check LizardTech’s Developer website
(http://developer.lizardtech.com) for additional and updated technical notes.

Zoom Levels
The following describes theMrSID SDK’s handling of zoom levels for MG2, MG3, MG4 and JP2. In
the code below, assume the following:

W = image width (constant)

H = image height (constant)

n = number of levels

MG2 Behavior

The default number of zoom levels is computed by initially assuming themaximum possible number
of levels. The size of the image that would be needed to support that number of levels is then
computed. If the actual image is larger than the computed size, the number is determined and the
SDK inquires no further. Otherwise, the SDK recomputes the image size with a reduced number of
levels, and continues to do so until the actual image size is equal to or greater than the required size.

n = 9
loop
{

min_length = (IPOW(2, n+1) - 2) * 4 + 1
if (W > min_length) and (H > min_length) break;
--n

}

The min_length values for n=9, 8, …, 3 are 4089, 2041, …, 57.

Themaximum number of levels for the image is computed the sameway.

These zoom level calculations are in the MG2WriterParams class. However, if you request less
than 3 levels (or more than 9), the SDK will clamp your request to 3 (or 9). These are hard limits for
MG2.

MG3 and MG4 Behavior

MG3 andMG4 use different equations thanMG2 and do not have the hard limits of 3 and 9 levels.

The default number of zoom levels is determined by initially assuming zero levels, then reducing the
minimum image dimension by a factor of two until it falls below 32.

n = 0
minWH = MIN(W,H)
while (minWH >= 32)
{

minWH = minWH / 2

- 57 -

http://developer.lizardtech.com/

MrSID Decode SDK9.5 for Raster – User Manual

++n
}

Themaximum number of zoom levels is computed by a different method: the number of levels is
increased as long as the dimension at that number of levels is not greater than theminimum actual
image dimension.

n = 1
minWH = MIN(W,H)
while (minWH > (1 << (n+1))
{

++n
}
--n

These zoom level calculations are in the MG3WriterParams and MG4WriterParams classes.

JP2 Behavior

JP2 behaves identically to MG3 andMG4. These zoom level calculations are in the
JP2WriterParams class.

Example

Consider a 512x512 image. Using the SDK encoder and info tools, the following results are obtained:

mg2: image is encoded to 6 levels

0: 512x512

1: 256x256

..

5: 16x16

6: 8x8

mg3: image is encoded to 5 levels

0: 512x512

1: 256x256

..

5: 16x16

jp2: image is encoded to 5 levels

0: 512x512

1: 256x256

..

5: 16x16

- 58 -

AppendixA - TechnicalNotes

Coding Conventions
The developers of theMrSID SDK follow a general set of coding conventions and guidelines. While
we certainly don't expect third-party developers to adhere to these conventions, they are described
here as an aid to understanding and working with the SDK, both at the syntactic and semantic level.

Note that these are only conventions, not hard rules; the SDK does not follow all of these guidelines
all the time, for reasons of practicality, historical practice, compatibility, etc. Where important for
developers, such deviations are noted in the ReferenceManual at
doc/ReferenceManual/index.html.

Syntactic Conventions

Line length

Lines should be no longer than 78 columns in order to avoid line- and wordwrapping.

Tabbing

Tabs are implemented as 3 spaces.

Namespaces

Header files should surround declarations with LT_BEGIN_NAMESPACE
(LizardTech) and LT_END_NAMESPACE(LizardTech), and source files should
declare LT_USE_NAMESPACE(LizardTech) at the top.

Warning levels

Source files should be compiled with high warning levels onWin32 compilers:

#if defined(LT_COMPILER_MS)
#pragma warning(push,4)

#endif
...
#if defined(LT_COMPILER_MS)

#pragma warning(ppop)
#endif

Variable names, type names, etc

l variables are spelled using camelcase: upperLeftPos
l function names are also spelled using camelcase: getUpperLeft()
l class member variables use an "m_" prefix: m_xPosition
l static variables (whether class members or not) use an "s_" prefix: s_twoPi
l enum and type names are capitalized: LTIImageStage, LTIDataType
l however, the integral primitive types are an exception: lt_uint8
l enum values are uppercase and generally are named to reflect their datatype:
LTI_DATATYPE_UINT8

l macros are uppercase: LT_USE_NAMESPACE

Integral primitives

The use of the typedef'd primitive datatypes, e.g. lt_uint8, is preferred when

- 59 -

MrSID Decode SDK9.5 for Raster – User Manual

possible and practical.

File names

For the "LT" and "LTI" classes, the source filenames are spelled with leading prefixes –
for example, class LTIGeoCoord is defined in header lti_geoCoord.h. For all other
classes, the filenamematches the class name – for example, class MG4ImageWriter
and header MG4ImageWriter.h.

Semantic Conventions

Initialization

As a precaution, all variables should be initialized at the point of declaration. A value of 0
or -1, INVALID (available for most enums), or LT_STS_Uninit (for status codes) is
usually appropriate.

Status codes

The public SDK does not use exceptions, and the internal implementation uses them
only sparingly. In general, functions should return status codes rather than relying on
throw. While putting an additional burden on the user, our experience has shown that
status codes are bothmore portable and less prone to error than the alternatives. If a
function returns a status code, always check it. The standard idiom for checking status
codes is:

LT_STATUS
Class::foo()

{
...
LT_STATUS sts = bar();
if (!LT_SUCCESS(sts)) return sts;
...
return LT_STS_Success;

}

Whenwriting a new function, consider returning an LT_STATUS status code hardwired
to LT_STS_Success instead of just returning void. If future development of the
function requires the ability to return failure codes, downstream uses will not have to be
changed.

Constructors

"Heavy" objects which require nontrivial work in their constructors should use an
initialize() function. This requires extra code for the user, but provides ameans
for returning status codes back to the user without relying on exceptions. In particular,
objects should not (explicitly or implicitly) call new or any other nontrivial function from
within their constructors.

The "creator-deletes" rule

The object that creates a new object is considered to be the "owner" of that new object
and as such has responsibility for deleting it. Passing the allocated object by address to
a function doesn't pass ownership to that function (unless documented otherwise).

Reference counting

- 60 -

AppendixA - TechnicalNotes

The SDK uses reference counting tomanage the lifespan of objects that comprise
image pipelines. This is similar in spirit to “smart” or “auto” pointers. The static member
function create() of a class should be used to create a new instance of that class.
Similarly, the (non-static) member function release() should be used when you are
done with object – for example, when the pointer to the object goes out of scope. The
retain()function should be used to hold onto an object, i.e. increment the reference
count; if you created the object, however, do not call retain(). When the last
reference calls release(), the object will delete itself. The twomost common
reference counted classes are LTImageStage and LTIImageStageManager.

Overrides

The SDK uses a system of “mixins” to simplify the overriding of LTIImageStage
properties. Specifically, LTIImageStage defines an abstract interface that needs to
be implemented by derived class of LTIImageFilter; LTIImageFilter
implements the LTIImageStage interface by forwarding themethod call to the next
LTIImageStage in the pipeline. Derived classes of LTIImageFilter that change
image properties will need to override the accessor functions.

Pass-by-reference

Data should be passed by reference whenever possible, for example
LTIImageStage& rather than LTIImageStage*. Pass-by-address is preferred when
reassigning ownership or when NULL is being used for some sentinel value.

Const

Use const whenever possible. In function declarations, it is used to indicate "in/out"
semantics for parameters (excluding by-value parameters). In variable declarations, it is
used to clarify intent of the variable's usage.

Disabled standard class member functions

Unless they are required by the class, it is preferable to explicitly disable the
assignment operator, copy constructor, and default constructor.

private:

LTINavigator();

LTINavigator(LTINavigator&);

LTINavigator& operator=(const LTINavigator&);

One class per header file

A header file should contain the declaration of only one class. Implementations should
not be in the header file unless truly warranted.

Inlining

Implementations should not be defined inline in the header file unless truly warranted.

- 61 -

MrSID Decode SDK9.5 for Raster – User Manual

Do not use compiler-specific inlining pragmas.

Templates

Use templates sparingly and only when truly warranted, as they lead to code bloat
and/or incompatibilities among various compilers. Consider using a templated function
private to a sourcemodule instead of making a public templated class. If youmust use
templates, avoid themore complex parts of the language.

Template headers

A header file containing only a templated class should have a corresponding source file
which includes it, even though the source file contains no implementation code.

Global data

The SDK contains no global variables. No non-const module statics or singleton
classes are used.

Threadsafety

The SDK may be safely used inmultithreaded applications. Locking of SDK objects is
NOT provided, however; the applicationmust guarantee each object is accessed
serially within a particular thread context.

Assertions

Assertionmacros, specifically LT_ASSERT(), should be used liberally.

Delegates

Where appropriate, for "callback" or "handler" mechanisms the use of simple abstract
classes ("delegates") is preferred to using a function pointer typedef.

Set/get

Use set()/get() style member variable access instead of making datamembers
public.

Other Conventions

STL

Do not use STL in public interfaces, as this may cause linkage problems. While the
SDK uses STL internally in some areas, its use is in general discouraged.

Optimization

Do not write "hand-optimized" code. Write first for correctness andmaintainability;
optimize it later only if profiling justifies it.

Overrides
The SDK uses a system of “mixins” to simplify the overriding of LTIImageStage properties.
Specifically, LTIImageStage defines an abstract interface that needs to be implemented by derived
class of LTIImageFilter; LTIImageFilter implements the LTIImageStage interface by

- 62 -

AppendixA - TechnicalNotes

forwarding themethod call to the next LTIImageStage in the pipeline. Derived classes of
LTIImageFilter that change image properties will need to override the accessor functions.

A cropping filter would change the width and height of the image at that stage in the pipeline, and so
would need to override getWidth() and getHeight().

For example:

#include "lti_imageFilter.h"
#include "lti_imageStageOverrides.h"

class MyCropFilter : public LTIOverrideDimensions< LTIImageFilter >

{
...
LT_STATUS initialize(... lt_uint32 newWidth, lt_uint32
newHeight, ...)
{

...
sts = setDimensions(newWidth, newHeight);
...

}
...

};

LTIOverrideDimensions<> adds getWidth() and getHeight(), a protected
setDimensions() function, and the needed datamembers.

The SDK uses templates to implement themixins over virtual inheritance. To overridemany sets of
properties you use the following code:

class MyFilter : public LTIOverrideXXX < LTIOverrideYYY <
LTIOverideZZZ < LTIImageFilter > > >
{ ... };

The list of overridemixin templates and the LTIImageStage functions they override is as follows:

l LTIOverrideMetadata
o getMetadata()

l LTIOverrideDimensions
o getWidth(), getHeight()

l LTIOverridePixelProps
o getPixelProps()
o getMinDynamicRange()
o getMaxDynamicRange()

l LTIOverrideNoDataPixels
o getNoDataPixel()
o getBackgroundPixel()

l LTIOverrideGeoCoord
o getGeoCoord()
o isGeoCoordImplicit()

l LTIOverrideMagnification
o getMinMagnification()
o getMaxMagnification()

- 63 -

MrSID Decode SDK9.5 for Raster – User Manual

l LTIOverrideIsSelectiveData
o isSelective()

l LTIOverrideStripHeight
o getStripHeight()
o setStripHeight()

l LTIOverrideDelegates
o setProgressDelegate()
o getProgressDelegate()
o setInterruptDelegate()
o getInterruptDelegate()

l LTIOverridePixelLookupTables:
o getPixelLookupTable()

Reference Counting
LTIImageStage objects are now reference counted.

l Use ClassName::create() to create a new object of type ClassName.
l Use object->retain() when you want to keep an object around (but not if you created it)
l Use object->release() when you are done using the object.

As a rule of thumb, if you create or retain an object then youmust issue a corresponding release for it.
ClassName::create() and LTIImageStageManager::createImageStage() are the two
must commonways to create an LTIImageStage object. When you pass a reader to a filter, the
filter calls retain() on the reader which “keeps the object alive”. Before the pointer to the reader
goes out of scope or is reassigned youmust call release() as shown in the following example:

LTIImageStage *pipeline = NULL;
{

MrSIDImageReader *reader = MrSIDImageReader::create();
sts = reader->initialize(filename);
pipeline = reader;

}

{
MyImageFilter *filter = MyImageFilter::create();
// ‘pipeline’ will be retained by ‘filter’
sts = filter->initialize(pipeline);

// release ‘pipeline’ because we are reusing the variable
pipeline->release();
pipeline = filter;

}

...

... do something with the pipeline

...
// done with the pipeline: releasing ‘pipeline’ will release the
// filter, which will in turn release the reader
pipeline ->release();
pipeline = NULL;

- 64 -

AppendixA - TechnicalNotes

Notes on Streams
The LTIOStreamInf class, and streams derived from it, provide an abstraction for performing I/O in
a variety of ways, including "large file" I/O, buffered I/O, memory-based I/O, etc. As it is a well-known
model, the semantics of the stream operations are very similar to those of the Unix stdio operations.

This technical note provides some technical details on the LTIOStreamInf operations.

Offsets

The term "offset n" refers to byte (n+1) in the file; that is, offset 0 is the first byte and offset 10 is the
eleventh byte. When a stream is "positioned at offset n", wemean than the next byte read in will be
byte (n+1).

Initialization

Each derived class has constructor which has no parameters and an initialize() function which
zero or more parameters which will vary according to each derived class. (Note: this initialization
process is different from that of most of the other SDK functions, which put all constructor
parameters in the constructor and not the initialization function.)

The initialize() functionmust be called prior to any other member functions.

open()

l open()must be called before any other stream functions can be called (excluding
initialize() and close())

l beyond that, the semantics of open() are undefined; typically, it will allocate resources on
behalf of the stream, e.g. a FILE handle, and/or make them available to the user

l after open(), the stream will be positioned at offset 0 and the EOF flag will be false
l calling open() on an already opened file will return an error

close()

l close() will deallocate the resources, but in such a way that a subsequent call to open()
will restore them for use

l calling close() on a closed stream will have no effect (and is not an error)
l strictly speaking, close() need not be called as the destructor is expected to call close();
relying on this is considered bad form, however

l a closed streammust be opened again before any other functions may be called

read(lt_uint8 *buffer, lt_uint32 len)

l read() will return the number of bytes successfully read; only that many bytes are valid
within the read buffer

l if the number of bytes read is not equal to the number of bytes asked for, then exactly one of
the following is true:

l EOF was encountered
o the stream uses "socket semantics", and one or more additional reads will be required

to get the remaining desired bytes
o an error occurred

- 65 -

MrSID Decode SDK9.5 for Raster – User Manual

l the getLastError() function is used to determine the precise error condition, if the number
of bytes read is not equal to the number of bytes requested

l the position of the stream after the read is equal to the position of the stream prior to the read
plus the number of bytes successfully read

l if EOF is true when the read is requested, read will return 0 bytes read and keep EOF set to
true

write(const lt_uint8 *buffer, lt_uint32 len)

l write() will return the number of bytes successfully written
l if the number of bytes written is not equal to the number of bytes requested, then exactly one
of the following is true:

o the stream uses "socket semantics", and one or more additional writes will be required
to output the remaining bytes

o an error occurred
l the getLastError() function is used to determine the precise error condition, if bytes read
!= bytes given

l the position of the stream after the write is equal to the position of the stream prior to the write
plus the number of bytes successfully written

l a call to write() will always clear the EOF flag; write() never sets the EOF flag

tell()

l tell() returns the current offset as a 64-bit value

seek()

l seek() positions the stream to the given offset using a 64-bit value
l the EOF flag is reset

EOF

l when an attempt is made to read past the last byte of the file, the EOF flag becomes true
l in particular, note that merely reading the last byte will not set EOF to true
l for example, consider a file of 4 bytes, with the stream positioned at offset 0:

o a read request of 4 bytes will return 4 bytes read, position is offset 4, EOF is not set
o a read request of 6 bytes will return 4 bytes read, position is offset 4, EOF is set

l a write operation has no effect on the EOF flag
l a seek operation always clears the EOF flag

duplicate()

l duplicate() creates a new stream of the same type as the original stream and calls
initialize() on it with same parameters as original stream

l isOpen() should initially return false; it is up to the caller to call open() on the newly
created stream

getLastError()

l The getLastError() function is used to get the status code when one of the following I/O
functions failed:

o read()
o write()
o tell()
o duplicate()

- 66 -

AppendixA - TechnicalNotes

l The getLastError() function is required because, like the other I/O functions, these
functions do not return status codes.

l The value returned by getLastError() is undefined unless called immediately after a failed
call to one of the above functions. A call to any other I/O function will invalidate the state of
getLastError().

l Theminimal implementation of this function is to return LT_STS_Failure.

Modes

Any "modes" that a stream supports ("w", "wb", "r+", etc) are defined by the derived class; there is no
notion of mode at the base class level.

For example, it is entirely possible one would want to make a "read-only file stream" class. Such a
class would be implemented with the write() function always returning 0 bytes read.

Notes on World Files
A "world file" is a simple text file containing auxilliary georeferencing information for an image. It can
be used to georeference an image that has no georeferencing information within it, or to override
existing georeferencing information.

By convention, the filename for a world file is the same as the image it pertains to, with a different
extension. The three-letter extension is made up of the first and last characters of the image filename
extension, followed by a 'w'. For example, the world file for a TIFF image named bainbridge.tif
would be bainbridge.tfw; the world file for aMrSID image named madison.sid would be
named madison.sdw.

The LTIGeoCoord class stores the same information as a world file. It has member functions for
reading and writing world files. Many of the image reader and writer classes support the use of world
file georeferencing information.

Format

The world file format is six lines, each line containing a double precision value (represented in text).
No additional lines may be present. Leading and trailing whitespace are allowed. Themeanings of the
six values are:

l dimension of a pixel in map units in x direction
l first rotation term
l second rotation term
l dimension of a pixel in map units in y direction
l x-coordinate of the center of the upper-left pixel
l y-coordinate of the center of the upper-left pixel

The y-dimension is, by convention, a negative value.

TheMrSID SDK currently ignores the rotation term inmost cases.

Because the floating point values are represented textually, when using world files be wary of errors
due to roundoff, imprecise scanf/printf conversion, etc.

- 67 -

MrSID Decode SDK9.5 for Raster – User Manual

Example

This is an example of a world file:

xx0.20000000
xx0.00000000
xx0.00000000
x-0.20000000
780.10000000
219.90000000

This world file indicates the image resolution is (0.2, -0.2) and the upper left is at (780.1, 219.9). The
rotation terms are zero, meaning no rotation is required.

Notes on BBB Files
A BBB image consists of two files, a binary file containing only the raw sample values of the image
and a text file describing the image properties. The raw datamay be organized in one of three layouts:
"band-interleaved by pixel" (BIP), "band-interleaved by line" (BIL), and "band sequential" (BIL). The
three formats are collectively referred to as the BBB file format.

Because BBB files only contain raw data with an easily editable header format, they are often used as
a "least common denominator" interchange format. However, there is no set standard for the
keywords that may be contained in the header. This document describes the header format that the
MrSID SDK supports, via the LTIBBBImageReader and LTIBBBImageWriter classes.

Filenames

The LTIBBBImageReader class supports four filename extensions: .bip, .bil, .bsq, and .bbb.
The first three imply the layout is BIP, BIL, or BIP respectively; the .bbb extension implies the
default layout, which is BIP.

The header file for a BBB image has the same name as the image, but with a .hdr extension.

Header Syntax

The header file is a simple text file containing keywords and their associated value, one
keyword/value(s) set per line.

All keywords and values are case-insensitive.

Blank lines are ignored. Leading and trailing whitespace is ignored.

A line that begins with a '#' character, possibly preceded by whitespace, indicates a comment line.
Comment lines are ignored.

Supported Keywords (Reader)

The keywords and their allowed values, as supported by the LTIBBBImageReader, are as follows:

BANDGAPBYTES

Not currently supported – value is ignored

- 68 -

AppendixA - TechnicalNotes

BANDROWBYTES

Not currently supported – value is ignored)

BANDS

Same as NBANDS

BYTE_ORDER

Endianness interpretation of data
Allowed values:

l MOTOROLA, M, BIG, BIGENDIAN
l INTEL, I, LITTLE, LITTLEENDIAN
l NA

Default: host endianness
The value NA (not applicable) may only be used if the number of bands is 1

BYTEORDER

Same as BYTE_ORDER

COLORSPACE

The colorspace of the image
Allowed values:

l GREY, GRAY, GREYSCALE, GRAYSCALE
l RGB
l CMYK
l MULTISPECTRAL

Default: GRAY for 1-banded images, RGB for 3-banded images, otherwise MULTISPECTRAL

COLS

Same as NCOLS

DATATYPE

The data type of the samples
Allowed values: U8, U16, F32
Default: U8

DYNAMICRANGELEVEL

Themidpoint of the range of the data

- 69 -

MrSID Decode SDK9.5 for Raster – User Manual

Allowed values: a single floating-point value (applies to all bands)
Default: (none – value is determined by LTIImage)

DYNAMICRANGEMAX

Themaximum dynamic range
Allowed values: a single floating-point value (applies to all bands)
Default: (none – value is determined by LTIImage)

DYNAMICRANGEMIN

Theminimum dynamic range
Allowed values: a single floating-point value (applies to all bands)
Default: (none – value is determined by LTIImage)

DYNAMICRANGEWINDOW

The size of the range of the data
Allowed values: a single floating-point value (applies to all bands)
Default: (none – value is determined by LTIImage)

E_SQUARED

Sphere eccentricity squared, for georeferencing
Allowed values: (floating-point)
Default: (none)

INTERLEAVING

Same as LAYOUT

LAYOUT

The data layout; use of this keyword overrides the layout implied by the filename extension
Allowed values: BIP, BIL, BSQ, or NA
Default: BIP
The value NA (not applicable) may only be used if the number of bands is 1

MAP_UNITS

Measurement unit for georeferencing
Allowed values: (string)
Default: (none)

NBANDS

- 70 -

AppendixA - TechnicalNotes

The number of bands in the image
Allowed values: 1-65535
Default: (none – this keyword is required)

NBITS

Number of bits used per sample
Allowed values: 1 to (total number of bits per sample)
Default: the total number of bits per sample

NCOLS

Width of image, in pixels
Allowed values: 1 to 2^31
Default: (none – this keyword is required)

NROWS

Height of image, in pixels
Allowed values: 1 to 2^31
Default: (none – this keyword is required)

PIXEL_HEIGHT

Same as YDIM

PIXEL_WIDTH

Same as XDIM

PROJECTION_NAME

Name of projection system, for georeferencing
Allowed values: (string)
Default: (none)

PROJECTION_PARAMETERS

Numeric projection parameters, for georeferencing
Allowed values: (1 to 15 floating point values)
Default: (none)

PROJECTION_ZONE

Projection zone number, for georeferencing
Allowed values: (int32)

- 71 -

MrSID Decode SDK9.5 for Raster – User Manual

Default: (none)

RADIUS

Sphere radius, for georeferencing
Allowed values: (floating point)
Default: (none)

ROWS

Same as NROWS

SEMI_MAJOR_AXIS

Semimajor axis, for georeferencing
Allowed values: (floating point)
Default: (none)

SEMI_MINOR_AXIS

Semiminor axis, for georeferencing
Allowed values: (floating point)
Default: (none)

SKIPBYTES

Number of bytes at top of image file to skip
Allowed values: 0 to (image size in bytes)
Default: 0
This can be used for raw formats which contain a fixed number of "header" bytes at the top of
the data file

SPHEROID_NAME

Name of projection system, for georeferencing
Allowed values: (string)
Default: (none)

TOTALROWBYTES

Not currently supported – value is ignored

UL_X_COORDINATE

Same as ULXMAP

- 72 -

AppendixA - TechnicalNotes

UL_Y_COORDINATE

Same as ULYMAP

ULXMAP

Upperleft x-position, for georeferencing
Allowed values: (any floating point value)
Default: (none – value is determined by LTIImage)

ULYMAP

Upperleft y-position, for georeferencing
Allowed values: (any floating point value)
Default: (none – value is determined by LTIImage)

WORDLENGTH

Number of bytes per sample
Allowed values: 1 or 2
Default: 1, unless overridden by DATATYPE

XDIM

Size of pixel in x-direction, for georeferencing
Allowed values: (any floating point value)
Default: (none – value is determined by LTIImage)

YDIM

Size of pixel in y-direction, for georeferencing
Allowed values: (any floating point value)
Default: (none – value is determined by LTIImage)
This is expected to be a positive value

Additional Notes

l These keywords are required: NBANDS, NCOLS, NROWS. All other keywords have default
values.

l If dynamic range is used, either both DYNAMICRANGEMIN and DYNAMICRANGEMAXmust be
set or both DYNAMICRANGEWINDOW and DYNAMICRANGELEVELmust be set.

- 73 -

MrSID Decode SDK9.5 for Raster – User Manual

Supported Keywords (Writer)

The LTIBBBImageWriter class only writes a subset of the above keywords to the header file. The
keywords used are:

BYTEORDER

Determined by constructor

COLORSPACELAYOUT

Only set if image colorspace is

CMYK

Set to BIP, BIL, or BSQ as per constructor argument

NROWS

Height of scene being written

NCOLS

Width of scene being written

NBANDS

Number of bands in image

NBITS

Bits of precision of image samples

ULXMAP

Determined by scene/image

ULYMAP

Determined by scene/image

XDIM

Determined by scene/image

YDIM

Determined by scene/image

- 74 -

AppendixA - TechnicalNotes

Example

This BBB header files describes a 640x480 color image, using 16 bits per sample.

NROWS 480

NCOLS 640

NBANDS 3

DATATYPE U16

Extensions

Note that some of the header syntax supported by theMrSID SDK may not be supported by other
vendors' BIP/BIL/BSQ implementations. In particular, the following features and keywords may be
somewhat specific to LizardTech:

l interpretation of .bbb extension as meaning layout of BIP
l support for comment lines
l the COLORSPACE keyword
l the DYNAMICRANGEMIN, DYNAMICRANGEMAX, DYNAMICRANGEWINDOW, and
DYNAMICRANGELEVEL keywords

GeoTIFF Metadata for JPEG 2000
Following is a copy of the first draft of The "GeoTIFF Box" Specification for JPEG 2000Metadata.

*** DRAFT ***

The "GeoTIFF Box" Specification for JPEG 2000
Metadata
Version 0.0

30 April 2004

*** DRAFT ***

Michael P. Gerlek, editor

mpg(AT)lizardtech(DOT)com

LizardTech, Inc.

- 75 -

MrSID Decode SDK9.5 for Raster – User Manual

1008Western Ave Suite 403

Seattle, WA 98104 USA

0 Editorial Notes
This is a DRAFT document. Comments welcome.

Sections in [brackets] are editorial asides, calling out specific questions or details to be resolved.

0.1 Disclaimers and Copyrights

This document is copyright © 2004 Celartem, Inc., doing business as LizardTech. Permission to
copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct or commercial advantage and this copyright notice appears.

LizardTech assumes no liability for any special, incidental, indirect or consequences of any kind, or
any damages whatsoever resulting from loss of use, data or profits, whether or not advised of the
possibility of damage, and on any theory of liability, arising out of or in connection with the use of this
specification.

1.0 Introduction
This specification describes aGeoTIFF-basedmethod for adding geospatial metadata to a JPEG
2000 file. While the actual specification is not at all complex or hard to implement, there has been
some confusion about what it actually is, what restrictions apply to its use, etc. Enough people have
asked about it that we considered it worthwhile to put something on paper and have it reviewed by
some independent developers.

Note the intent of this document is only to codify existing practice as of this writing; nomodifications
or extensions to this specification are planned or expected.

1.1 History, Background

Mapping Science Inc. (MSI) provided the first implementation of this specification in their GeoJP2(tm)
encoder product in 2003. At that time, the definition of the specification was available only under
certain licensing restrictions fromMSI.

LizardTech, Inc. acquired the assets of Mapping Science in 2004. It is LizardTech's position that this
specification should be publicly available for anyone to implement. Neither JPEG 2000 nor GeoTIFF
are proprietary standards; the combination should not be either.

Note that "GeoJP2" is a trademark that refers to the original MSI encoder (now owned by
LizardTech). Please don't use the term "GeoJP2" to refer to this metadata specification -- we don't
want this specification to be encumbered by trademark issues.

1.2 Box Structure

TwoUUID boxes are defined.

The first, called the GeoTIFF box, contains a degenerate GeoTIFF file as described in section 2.

- 76 -

AppendixA - TechnicalNotes

The second, called the world file box, contains the usual six doubles as in an external world (.wld) file,
plus some additional version information. This is described in section 3. Presence of the world file box
is optional.

This specification assumes a compliant JP2 file with only one codestream box.

2.0 The GeoTIFF Box
TheGeoTIFF box provides a simplemechanism for a JP2 file to have the same level of geospatial
metadata as is provided by the widely supported GeoTIFF standard, using the normal GeoTIFF
implementations.

2.1 UUID

The UUID for this box is

static unsigned char geotiff_box[16] =

{

0xb1, 0x4b, 0xf8, 0xbd,

0x08, 0x3d, 0x4b, 0x43,

0xa5, 0xae, 0x8c, 0xd7,

0xd5, 0xa6, 0xce, 0x03

};

2.2 Box Contents

This box contains a valid GeoTIFF image. The image is "degenerate", in that it represents a very
simple image with specific constraints:

l the image height and width are both 1
l the datatype is 8-bit
l the colorspace is grayscale
l the (single) pixel must have a value of 0 for its (single) sample

The TIFF image is to be encoded in little endian format. [Note that an early and possibly unreleased
MSI encoder seems to have used big endian form, but the GeoTIFF data appears corrupt.]

The intent is that any compliant GeoTIFF reader/writer will be able to read/write this image.

- 77 -

MrSID Decode SDK9.5 for Raster – User Manual

Note that the TIFF image properties -- width, bitdepth, etc -- do NOT reflect the image properties of
the JP2 image. These image properties are not to be used in the interpretation of the geospatial
metadata.

Other TIFF image properties maybe present; if so, they should be similarly ignored.

[If the TIFF image properties do not meet the constraints above, the geospatial information
represented by this box should be considered to be undefined.]

TheGeoTIFF imagemay contain TIFF metadata tags. These should be ignored; they do not apply to
the JP2 image.

TheGeoTIFF imagemay contain any number of GeoTIFF keys, as allowed by the GeoTIFF standard.
These keys define the geospatial metadata of this box and of the JP2 image itself.

3.0 The World File Box
[This description is based onmy reading of theMSI source code; I will have to flesh this out as I
becomemore confident of it. Alternatively, at some point if I can get the code suitably cleaned up I
may just publish the implementation itself... If anyone needs this information now, feel free to contact
me.]

The world file box contains one or more "chunks" of metadata data of various types. Themost
common chunk type encodes the normal six-doubles style of geopositioning information found in the
conventional external world files often used with some image types.

[Other chunk types were used to indicate the operating system the JP2 image created on, theMSI
command line used, and arbitrary user-defined bytes. It is not clear if these other chunk types were
ever widely used or not. I will attempt to define these other chunks, but they use should be considered
to beOBSOLETE and not used in future implementations.]

3.1 UUID

The UUID for this box is

static unsigned char world_box[16] =

{

0x96, 0xa9, 0xf1, 0xf1,

0xdc, 0x98, 0x40, 0x2d,

0xa7, 0xae, 0xd6, 0x8e,

0x34, 0x45, 0x18, 0x09

};

- 78 -

AppendixA - TechnicalNotes

3.2 Box Contents

The first bytes in the box, which wewill call the "header", give some versioning information and the
number of chunks in the box. The "chunks" themselves then follow, laid out as contiguous bytes. The
box ends with a small of amount of data in what we will call the "footer".

3.2.1 Header Format

Bytes 0-3: 'M', 'S', 'I', 'G'.

Bytes 4-5: major andminor version numbers (shifted and packed together) - the actual values of these
numbers may not be used for anything

Bytes 6-13: feature set flags - current values are {1, 0, 0, 0, 0, 0, 0, 0} - first flag controls interpretation
of the world file values, see section 3.2.2.1 - second flag indicates windows or linux build of encoder;
not used for anything? - remaining flags undefined (leave as zero)

Byte 14: number of chunks in the box?

Byte 15: next box?; apparently always 0

The next bytes in the file correspond to the serialization of each chunk. Theremay be zero or more
chunks present; each chunk typemay appear at most once.

3.2.2 Chunk Format

The chunk format appears to be a simple header of six bytes, followed by the chunk-specific data.

Byte 0: chunk index, used to indicate type of chunk

Byte 1: chunk properties [not used?]

Bytes 2-5: chunk length (including these six bytes) - stored as little-endian unsigned int

3.2.2.1 World Chunk Format

Byte 0: chunk index (equal to 0)

Byte 1: chunk properties

Bytes 2-5: chunk length (equal to 2 + 4 + 6*8) - stored as little-endian unsigned int

Bytes 6-13: x scale (resolution)

Bytes 14-21: x rotation

Bytes 22-29: y rotation

Bytes 30-37: y scale (resolution)

Bytes 38-45: x upper-left

Bytes 46-53: y upper-left

- 79 -

MrSID Decode SDK9.5 for Raster – User Manual

The six geo values are stored as little-endian doubles.

The first feature flag (defined in section 3.2.1) control the interpretation of these values. According to
the comments in the source code, if set to 1 then the following applies:

"This was instituted with version 1.03.11 (May 15, 2003) to signify that we clarified the
definition of the georeferencing data and found out that that data represents the upper
left corner of the upper left pixel, not the center as we had thought, so the [world chunk
values are] not equal to the geotiff data, but is shifted by 0.5*scale to the center of the
pixel."

If the world chunk is present, these values should override the corresponding values in the GeoTIFF
box.

3.2.2.2 User Data Chunk Format

Byte 0: chunk index (equal to 1)

Byte 1: chunk properties

Bytes 2-5: chunk length - stored as little-endian unsigned int

Bytes 6..n: user-defined data (chunk lengthminus 6 bytes)

3.2.2.2 Command-Line Chunk Format

Byte 0: chunk index (equal to 2)

Byte 1: chunk properties

Bytes 2-5: chunk length - stored as little-endian unsigned int

Bytes 6..n: command-line string (chunk lengthminus 6 bytes)

3.2.2.2 OS Data Chunk Format

Byte 0: chunk index (equal to 3)

Byte 1: chunk properties

Bytes 2-5: chunk length - stored as little-endian unsigned int

Bytes 6..n: unknown data (chunk lengthminus 6 bytes)

3.2.3 Footer Format

The footer, coming after the chunk data, is six bytes long.

Byte 0: set to 0xff

Byte 1: set to 0x00

Bytes 2-5: file offset of next world file box?

- 80 -

AppendixA - TechnicalNotes

Georeferencing of NITF Imagery
Typically, TREs are used to provide the necessary georeferencing. As the current SDK release does
NOT provide TRE support, however, some additional documentationmay be helpful to some
developers.

This technical note provides commentary on how the SDK reads and writes “positioning information”
in our NITF support – including basic world file information (upper left points, resolution), coordinate
system information (WKT data), and positioning of image segments relative to each other.

Geo Support Features in NITF
Independent of any of our implementation issues, the file format itself can provide georeferencing
support in the following ways.

IGEOLO

Each image segment may contain an ICORDS and an IGEOLO field. Together these fields give low-
precision positioning data for the four corner points of the image. The standardmakes it very clear
that this data is only for cataloging purposes and should not be used for accurate georeference
positioning.

The ICORDS field indicates whether the IGEOLO points are in UTM, UTM/MGRS, orWGS84. The
four pairs of numbers are expressed in either lat/long (decimal degrees) or UTM form, as appropriate.

NOTE: The standard does not address the coordinate system of the image data itself. IGEOLO
data only indicates what the boundary points of the image would be, if the image were to be projected
intoWGS84.

Use of the IGEOLO data is optional. For more information seeMIL-STD-2500C, table A-3 (page 86).

CCS

Each image segment in the file must be positioned according to the CommonCoordinate System, a
virtual, underlying grid which is used to collocate all the segments in the file. The grid is expressed
using integer values with (0,0) at the upper-left. The CCS info for a segment has four parts:

ILOC: the upper-left (x,y) offset of the segment on the CCS grid. This may be an “absolute offset”
(which is relative to (0,0)) or it may be a “relative offset” (which is relative to another segment’s ILOC),
depending on the IALVL value.

IDLVL: display level, or Z-ordering. Each segment must have a unique IDLVL value. The “lowest”
segment has the lowest number. (Note: segment numbering starts at 1, not 0.)

IALVL: attachment level. A segment’s ILOC position on the CCS grid may be expressed relative to
another segment, by setting its IALVL value to the IDLVL level of the that other segment. If IALVL is
zero, the ILOC position is relative to (0,0).

The ILOC values must be in the range -9,999 to 99,999 (5-digit field). This means that certain mosaics
cannot be represented. For example, consider four 40Kx40K images laid out as follows:

- 81 -

MrSID Decode SDK9.5 for Raster – User Manual

The ILOC for images 1 and 4 cannot be expressed relative to (0,0) as they would require offsets of
120,000, which is out of range. They cannot be expressed relative to the origin of images 2 and 3
either, as they would require offsets of -40,000, which is also out of range. A more obvious – but less
likely –mosaic which cannot be represented is simply two images spread far apart:

where the images are both 1Kx1K and image 2 is 150,000 units from the origin.

Use of the CCS data is required. For more information seeMIL-STD-2500C, table A-3 (page 97).

BLOCKA TRE

This metadata extension contains four fields which repeat the IGEOLO fields for the segment but
provide higher precision. They are always expressed inWGS84 lat/long, as
degrees/minutes/seconds or decimal degrees.

NOTE: As with IGEOLO, the BLOCKA data does not say anything about the coordinate system of
the image data itself.

Use of the BLOCKA TRE is optional. Within BLOCKA, the LOC fields are themselves optional. For
more information see STDI-0002, section 8.3.4 (page 83).

World Files

Although not part of any NITF standard, the normal LizardTech world file conventions nonetheless
can be used to specify the upper-left coordinates and resolution of the image.

Image Segment CRSes

A careful consideration of the above will reveal that, given the data available, the SDK has no way to
determine the coordinate system of any image segment absent any TRE support. It may know where
the image is, for cataloging or indexing purposes, but it knows nothing about the data itself.

This could be addressed by adding our own “proprietary” TRE or Text Segment which would contain
ourWKT string. Such extensions would go against the intent of the standard, however. Absent the

- 82 -

AppendixA - TechnicalNotes

TRE information, in the near term we suggest that image segments should generally be projected into
the commonWGS84 space, where possible and practical.

Implementation Support
This section describes the rules governing how the above fields are interpreted and represented
within the SDK for NITF files. We consider the four cases of reading and writing both single and
multiple segment files.

In the following discussion, recall that within the SDK framework, an “image” (class LTIImage)
contains a “geo coord” object (class LTIGeoCoord) which contains threemain pieces of data:

l the (x,y) upper-left position
l the (x,y) resolution
l theWKT string

Single Segment Reading

The SDK supports the ability to read any one single segment from aNITF file.

As discussed above, the SDK can never know the projection system of an image segment.
Nonetheless, the geo position is determined as follows:

1. First, we fall back to the normal default of (0,h) for the upper-left position. TheWKT string is
left empty.

2. If set, we interpret the IGEOLO/ICORDS field to determine the x,y corner position.
3. If present, a world file will then override the default positions.
4. We then offset the geo position of the image based on the ILOC data for the segment. (Note:

The ILOC data is multiplied by the resolution, before adding it to the position)

NOTE: The world file serves to describe the position of CCS (0,0), not any individual segment in
particular.

Multiple Segment Reading

The SDK only supports the ability to read a single segment. To readmultiple segments, to be
displayed as amosaic of tiles, the SDK's mosaic filter stage should be used.

Single Segment Writing

Whenwriting an image, the SDK will always have good georeferencing information, but wemay or
may not have goodWKT data.

l set ILOC to (0,0), IDLVL to 1, and IALVL to 0
l if we haveWKT data, and if the points can be reprojected intoWGS84, then

o write the IGEOLO data
o write the BLOCKA TRE

l write a world file (at user’s discretion)

- 83 -

MrSID Decode SDK9.5 for Raster – User Manual

Multiple Segment Writing

Whenwritingmultiple segments, the SDK is given both the constructedmosaic and each of the
individual segments.

l ILOC data:
o the ILOC (x,y) of each segment is set based on the segment’s georeferencing

information, relative to the georeferencing information of the origin of the overall mosaic
(and scaled appropriately by resolution)

o the IDLVL is set to the segment number
o the IALVL is set to 0

l as in the single segment case, if we haveWKT data, and if the points can be reprojected into
WGS84, then

o write the IGEOLO data
o write the BLOCKA TRE

l write a world file (at user’s discretion)
o using the georeferencing information of the overall mosaic

NOTE: Because we keep IALVL at 0, we’re limited to having any one segment at most 100K units
from the CCS origin. That is, we do not yet support the ability to position one segment relative to
another.

Writing JPEG 2000 Segments

Whenwriting JPEG 2000 segments, youmay use the “boxed” format. This means the classical
metadata box is typically present; if so, this is used to recover the georeferencing information for the
segment per the normal SDK processes.

Metadata Tags
Encoded within eachMrSID (and JPEG 2000) file is a set of metadata tags, used to convey additional
information about the image. These tags are similar to TIFF tags, although the actual encoding
mechanism is different. Themrsidinfo tool can be used to dump themetadata for an image.

The standardmetadata tags used by all MrSID images, referred to as the "classical" tags, are listed
below. Other than the "start" and "end" tags, the tags may appear in any order.

For mosaicked images, themetadata encoded with the image generally corresponds to the first
image in themosaic. The filenamemetadata tag contains a comma-separated list of the input files.
Themetadata refers to the image as presented to the encoder; this means that any filter or transforms
operations will be correctly accounted for.

Themetadata is supplemental information only. Some of this metadata is also contained in the
LTIImage class; in general, querying the LTIImage class is preferred to evaluating themetadata,
for example for information such as geographic position, background color, etc.

General Tags

The tags in the table below apply to MrSID encoding.

- 84 -

AppendixA - TechnicalNotes

Tag Description Notes

IMAGE::BITS_PER_SAMPLE Number of bits per sample (uint16)

IMAGE::COLOR_SCHEME Colorspace of image (uint32) Values: 0 for RGB, 3 for grayscale, 2 for
CMYK, 10 for multispectral

IMAGE::DATA_TYPE Datatype of samples in image (uint32) Values: 0 for unsigned 8-bit int, 1 for 32-bit
float, 2 for unsigned 16-bit int

IMAGE::DEFAULT_DATA_
VALUE

Sample values for background pixel Stored as an array of values, one for each
band, in order. The values are stored in the
datatype of the samples

NOTE:With older images containing uint8
data, the tag IMAGE::NO_DATA_VALUE
may be used

IMAGE::DYNAMIC_RANGE_
WINDOW

Custom contrast setting (double) Represents the size of the range of the data.
This tag can have per-band values for MG4
images

IMAGE::DYNAMIC_RANGE_
LEVEL

Custom brightness setting (double) Represents themidpoint of the range of the
data. This tag can have per-band values for
MG4 images

IMAGE::ENCODING_
APPLICATION

Name and version of encoding
application

Required tag

IMAGE::ENCODING_
COMMENT

Context of encoding operation

IMAGE::EOM End of metadata

IMAGE::FORMAT Text representation of the format Examples: "MrSID/MG4", "JPEG 2000"

IMAGE::HEIGHT Height of the image, in pixels (uint32)

IMAGE::INPUT_FILE_SIZE Size of the input image or mosaic in bytes
(double)

IMAGE::INPUT_FORMAT Name of input image type (string)

IMAGE::INPUT_LUT Color lookup table Stored as an array of 256*3 values, one value
for each band (R,G,B) for each of the 256
entries in the table

IMAGE::INPUT_NAME Filename of the input image (string)

IMAGE::LTI_ESDK_
VERSION

The LizardTech SDK version number

IMAGE::MODIFICATIONS Changes to input pixel data See list following this table for values.

IMAGE::NO_DATA_VALUE Sample values for background pixel Used only by older MrSID images; see
IMAGE::DEFAULT_DATA_VALUE

IMAGE::QUANTIZATION_
SCALE

The quantization scale is ameasure of
the precision of the image data. The pixel
values of the compressed output image
are accurate to within half of the scale
value.

Only floating point MG4 images use the
quantization compression type.

IMAGE::SOM Start of metadata

IMAGE::TRANSPARENT_ Sample values for the "no data" pixel Stored as an array of values, one for each

General Metadata Tags

- 85 -

MrSID Decode SDK9.5 for Raster – User Manual

Tag Description Notes

DATA_VALUE band, in order. Values are stored in the
datatype of the samples

IMAGE::WIDTH Width of the image, in pixels (uint32)

IMAGE::X_RESOLUTION Georeferencing pixel resolution in x-
direction (double)

IMAGE::XY_ORIGIN Georeferencing (x,y) location for the
center of the upper left corner pixel

Stored as an array of two doubles

IMAGE::Y_RESOLUTION Georeferencing pixel resolution in x-
direction (double)

Values for IMAGE::MODIFICATIONS Tag

The following are acceptable as values for the IMAGE::MODIFICATIONS tag:

l LOSSLESS – this value will only ever appear by itself, and indicates that the pixels have been
losslessly compressed and can be recovered in their original form.

l COMPRESSED – the image has been compressed at a rate that did not preserve the pixels
losslessly.

l CROPPED – some of the original extent of the image has been cropped (those pixels have
been discarded).

l EMBEDDED – the image has been embedded in a larger extent (new pixels have been added
to the image.

l SCALED – the image has beenmade larger or smaller by stretching, using interpolation or
wavelet decomposition.

l MASKED – some pixels from the image have beenmasked out (made transparent).
l INTERPRETED-ALPHA – the original image had an alpha band which was dropped or
reconstructed from transparency information.

l REORDERED-BANDS – the bands represent a reordering and/or subset of the bands as they
were in the original image.

l TRANSFORMED-COLORSPACE – the original pixel colors were transformed into a different
colorspace.

l CHANGED-DATATYPE – the image datatype is not the same as that of the original.
l ALTERED-COLOR – the image has been color-balanced.
l MOSAICKED – the image was created frommore than one source image. In this case,
MODIFICATIONS flags from all component tiles have been incorporated into the resulting
image.

l REPROJECTED – the image was warped to a different projection system.
l WATERMARKED – awatermark has been added to the image.
l OVERLAID – the image has had other information (text or vector data) superimposed on it.
l QUANTIZED – the image was created with the quantization compressionmethod.
Quantization is a lossy compressionmethod that reduces the precision of pixel values in the
image. Quantization is required to compress floating point MG4 images.

Area of Interest (AOI) Tags

The tags in the table below apply only to images encoded with areas of interest:

- 86 -

AppendixA - TechnicalNotes

Tag Description Notes

IMAGE::AOI::n::REGION::VECTOROVERLAY Name of
vector overlay
file, if any –
(string)

IMAGE::AOI::n::REGION::VECTOROVERLAY_
LAYER

Layer number
from vector
overlay file (if
one is used) –
(integer)

IMAGE::AOI::n::REGION::X Upper left X
pos of region –
(integer)

IMAGE::AOI::n::REGION::Y Upper left Y
pos of region –
(integer)

IMAGE::AOI::n::METHOD The AOI
method used –
(string)

Values:

l "shift inner"
l "shift outer"
l "weight"

IMAGE::AOI::n::WEIGHT Weight value
used –
(double)

IMAGE::AOI::n::MAGNIFICATION Magnification
at which AOI
was applied –
(double)

IMAGE::AOI::n::NAME Optional name
of AOI region –
(string)

IMAGE::AOI::n::COMMENT Optional
comment for
AOI region –
(string)

IMAGE::AOI::n::URL Optional URL
referring to
AOI region –
(string)

Area of Interest (AOI)Tags

- 87 -

MrSID Decode SDK9.5 for Raster – User Manual

MG2-Only Tags

The classical tags in the table below apply to MG2 images only:

Tag Description Notes

IMAGE::COMPRESSION_BLOCK_
SIZE

Block size used in
MrSID encoding
(uint32)

IMAGE::COMPRESSION_GAMMA G-weight value used
inMrSID encoding
(float)

IMAGE::COMPRESSION_
VERSION

Version of encoder
used (array of 3 sint32
values)

IMAGE::COMPRESSION_WEIGHT Weight value used in
MRSID encoding
(float)

IMAGE::CREATION_DATE Date and time of
image encoding
(string)

IMAGE::COMPRESSION_NLEV Number of zoom
(resolution) levels in
the image (uint32)

IMAGE::STATISTICS:MAXIMUM Maximum sample
values for each band
in the input image
(array of values)

The number and
datatype of the values
correspond to the
number of bands and
sample type of the
image

IMAGE::STATISTICS:MINIMUM Maximum sample
values for each band
in the input image
(array of values)

The number and
datatype of the values
correspond to the
number of bands and
sample type of the
image

IMAGE::STATISTICS:MEAN Average value of all
samples for each band
(array of doubles)

IMAGE::STATISTICS:STANDARD_
DEVIATION

Standard deviation of

MG2-Only Tags

- 88 -

AppendixA - TechnicalNotes

Tag Description Notes

all samples for each
band

IMAGE::TARGET_
COMPRESSION_RATIO

Compression ratio
used for encoding
(float)

For MG2, this only
approximates the
actual compression
ratio achieved

Other Metadata Tags

When using GeoTIFF input images, the GeoTIFF metadata tags are copied directly into theMrSID or
JPEG 2000 file. When using ERDAS IMAGINE and USGS DOQmetadata, certain other custom
metadata tags are inserted as well.

Negative y-Resolutions
The y-resolution ("YRES" or "YDIM") of an image can be either positive or negative, depending on
what type of image is being used and which interface is being used to query the resolution. This note
provides some background on this issue.

First, some definitions:

By "negative YDIM" (hereafter, "-YDIM"), wemean that (0,0) is in the LOWER LEFT and extends up
and to the right to (w,h). This is the normal Cartesian representation you learned in high school
algebra.

By “positive YDIM” ("+YDIM"), wemean that (0,0) is in the UPPER LEFT and extends down and to
the right to (w,h). This is a common representation in computer graphics.

Figure 1 shows the default geo coordinates for a 640x480 image with no internal georeferencing,
using -YDIM conventions. Note that while the rows of the image will proceed visually down the page,
the y-value of the rows decreases, from 479 down to 0.

- 89 -

MrSID Decode SDK9.5 for Raster – User Manual

Figure 1: 640w x480h

TheMrSID SDK follows the -YDIM convention. This means that the function
LTIGeoCoord::getYRes() will generally return a value less than zero. Image reader and writer
classes must respect this: when importing or exporting geospatial resolutions, caremust be taken to
adjust the sign if needed in order to match the SDK requirements and the external file format
requirements.

Additional notes

The classical MrSID metadata tag IMAGE::Y_RESOLUTION is stored with a positive sign, for
historical reasons. If you access this metadata value directly, youmust multiply the value by -1.0
before using it.

As a debugging aid, themrsidinfo tool can be used to show the georeferencing of the image, including
all four corner points.

World files expect the use of negative YDIMs (fourth line).

BBB files use positive YDIMs in their headers. (The LTIBBBImageReader class will internally
negate the value to satisfy the SDK requirements.)

YDIM and XDIM should never be 0.0.

Nodata and Background Pixels
This note describes how theMrSID SDK implements the concepts of "nodata" and "background"
pixelsPixels.

NOTE: The following is not applicable to theMG4 format, in which transparency is implemented
through the use of alpha bands.

- 90 -

AppendixA - TechnicalNotes

Definitions

Nodata

The nodata pixel of an image is used to indicate which pixels within the bounds of the image are
to be ignored when performing an operation on the image, for examplemosaicking, rendering,
etc. The default is to have no nodata pixel associated with an image; in this case, all pixels in
the image represent valid data.

Background Data

The background pixel of an image is used to provide valid pixel values outside of the bounds of
the image. In rendering the image, if the specified scene exceeds the boundaries of the image,
the background pixel can be used by an application to fill in the portion of the output buffer
beyond the image boundary.

The default is to have no background pixel associated with an image. In this case, when pixels
"outside of" the image are required, the black pixel consisting of a zero in each band will be
used. For CMYK images, however, the pixel consisting of themaximum sample values in each
band will be used.

While the LTIImageStage::read() function does not allow for decoding outside the bounds
of the image, the background pixel and the nodata pixel are used whenmosaickingmultiple
images together.

Transparency

TheMrSID SDK does not support transparency operations more generally than the above
simple nodata support, for example via bitmasks, clipping paths, or alpha blending.

MrSID Metadata Tags

For compatibility reasons, the classical metadata tag names used inMrSID do not correlate well with
the definitions given above.

The tags used are:

IMAGE::NO_DATA_VALUE

Represents the background pixel (used by older MrSID images)

IMAGE::DEFAULT_DATA_VALUE

Represents the background pixel (used by newerMrSID images)

IMAGE::TRANSPARENT_DATA_VALUE

Represents the nodata pixel

Figure 1 shows two images, A and B, that are to bemosaicked together into image C, such that B lies
precisely on top of A. Both images have a background color of red and a nodata color of blue. In the
mosaic C, the upper rectangle is yellow because the data comes from the nodata region of B, which
allows the A image to “show through”. The lower rectangle is red, however, because we again "see

- 91 -

MrSID Decode SDK9.5 for Raster – User Manual

through" B and onto the corresponding region of A; that region is set to the nodata color, therefore the
red background of A is used.

Figure 1: Nodata and background color in overlapping images

Notes on the Mosaicking Process

Whenmosaicking two images together, the nodata pixel of the image "on top" is honored. Many
images do not have a nodata pixel explicitly set, however, so the following rules are applied:

1. If the image has a nodata pixel set, use that.
2. Otherwise, if the image has a background pixel set, use that.
3. Otherwise, use the "black" pixel.

Themotivation for this treatment of nodata is to give the best looking image for the case when two
images are beingmosaicked together such that only their corners overlap, resulting in a large image
with a lot of "black" background. If this resultingmosaic is then laid on top of some other even bigger
image, we want to be able to treat that black background as nodata. (Note: this solution does allow
for speckling in the image, as the original two squares might have legitimate black pixels within their
data.)

If either background or nodata is to be set for an image, set both properties to the same value. When
mosaicking images together, all images should have the same background and nodata color.

- 92 -

Appendix B - Company and Product Information
This chapter contains information about LizardTech and its products as well as copyrights,
trademarks and other information pertaining to this LizardTech software.

About LizardTech
Since 1992, LizardTech has delivered state-of-the-art software products for managing and distributing
massive, high-resolution geospatial data such as aerial and satellite imagery and LiDAR data.
LizardTech pioneered theMrSID® technology, a powerful wavelet-based image encoder, viewer, and
file format. LizardTech has offices in Seattle, Denver, London and Tokyo and is a division of Celartem
Technology Inc. For more information about LizardTech, visit www.lizardtech.com.

Other LizardTech Products
Thank you for using LizardTech® software. We at LizardTech are glad to have you as a customer.
While you’re “in the shop,” explore LizardTech’s other products for managing high-quality geospatial
images and LiDAR data.

GeoViewer
Efficient Viewing and Exporting of MrSID and JPEG 2000
Layers
GeoViewer is LizardTech's free, standalone application for viewing geospatial imagery, vector
overlays and LiDAR data. GeoViewer enables you to combine, view and export visual layers from
varied sources, such as local repositories, Express Server catalogs, andWMS and JPIP servers.
GeoViewer supports a wide range of input formats and exports to GeoTIFF, PNG and JPEG. It's the
most efficient means of viewingMrSID and JPEG 2000 images.

For more information about GeoViewer visit
http://www.lizardtech.com/downloads/category/#viewers.

ExpressView Browser Plug-in
Fast and Easy Viewing of Large Images
ExpressView™Browser Plug-in enables you to view, navigate and print MrSID and JPEG 2000
imagery in Internet Explorer or Firefox. Like GeoViewer, ExpressView enables you to save a portion
of an image in a number of other image formats. ExpressView Browser Plug-in is quickly
downloaded, easily installed, and free for individual use. It's themost convenient way to view
MrSID and JPEG 2000 imagery over networks!

For more information about ExpressView Browser Plug-in visit
http://www.lizardtech.com/downloads/category/#viewers.

- 93 -

http://www.lizardtech.com/
http://www.lizardtech.com/downloads/category#viewers
http://www.lizardtech.com/downloads/category#viewers

MrSID Decode SDK9.5 for Raster – User Manual

GeoExpress
The Industry’s Best Image Manipulation and
Compression Software
With powerful tools for reprojecting, color balancing, andmosaicking, GeoExpress® software is the
industry’s choice for manipulating and compressing geospatial imagery to industry standard formats.
You can configure Express Server and Spatial Express® software directly from GeoExpress, which
makes it the ideal command center for your storage and distribution workflows.

For more information about GeoExpress visit www.lizardtech.com/products/geo/.

LiDAR Compressor
LiDAR Data Meets the MrSID Format
LizardTech LiDAR Compressor™ software enables you to turn giant point cloud datasets into
efficient MrSID files that retain 100 percent of the raw data at just 25 percent or less of the original file
size (lossless compression). If storage requirements are critical, you can reduce your LiDAR file
sizes by 90 percent or more by choosing a higher compression ratio and letting LiDAR Compressor
select the best way to reach a desired file size (lossy compression). Unlike raw LAS or ASCII data,
LiDAR files compressed toMrSID are easily managed resources you can extract derivatives from
again and again.

For more information about LiDAR Compressor visit www.lizardtech.com/products/lidar/.

Express Server
Image Delivery Software for Geospatial Workflows
LizardTech Express Server software is the best solution for distributing imagery in MrSID or JPEG
2000 format. With Express Server, users on any device access imagery faster, even over low-
bandwidth connections. Express Server is faster, more stable and easier to use than any other
solution for delivering high-resolution raster imagery.

For more information about Express Server visit http://www.lizardtech.com/products/exp/.

- 94 -

http://www.lizardtech.com/products/geo/
http://www.lizardtech.com/products/lidar/
http://www.lizardtech.com/products/exp/

Glossary

Glossary
Following are descriptions of some terms, phrases and acronyms used in this documentation that you
may not be familiar with.

Background color

The pixel value that defines the color of the image outside the pixel extents of the image.
This property is most often used inmosaicking. See also "Nodata color" and
"Transparency color".

Band

A set of samples corresponding to one spectral component of an image e.g. the “red”
band of an RGB image. Also known as component. There is a weak correlation between
the colorspace and the number of bands: grayscale is 1, RGB is 3, CMYK is 4.
(Multispectral is the exception, as it has one or more bands.)

BBB

Name of a file format for raw images, short for "BIP/BIL/BSQ."

BIL

One of the three “BBB” formats; abbreviation for "band-interleaved by line." In this data
layout, the samples of the image are laid out per line, one sample at a time. Figure 1
shows a 3-banded image of width 3 and height 2 using a BIL layout.

R00 R01 R02

G00 G01 G02

B00 B01 B02

R10 R11 R12

G10 G11 G12

B10 B11 B12

Figure 1: BIL Layout

BIP

One of the three “BBB” formats; abbreviation for "band-interleaved by pixel." In this data
layout, the samples of the image are laid out per pixel, one sample at a time. Figure 2
shows a 3-banded image of width 3 and height 2 using a BIP layout.

R00 G00 B00 R01 G01 B01 R02 G02 B02

R10 G10 B10 R11 G11 B11 R12 G12 B12

- 95 -

MrSID Decode SDK9.5 for Raster – User Manual

Figure 2: BIP Layout

BSQ

One of the three “BBB” formats; abbreviation for "band-sequential." In this data layout,
the samples of the image are laid out per band, one sample at a time. Figure 3 shows a
3-banded image of width 3 and height 2 using a BSQ layout.

R00 R01 R02

R10 R11 R12

G00 G01 G02

G10 G11 G12

B00 B01 B02

B10 B11 B12

Figure 3: BSQLayout

Byte order

See "Endianness".

Component

See "Band".

Composite image

With respect to MG3 andMG4, an imagemade up of several internal images (known as
tiles). See also "MG3" and "MG4".

Compression

An operation that creates a new image file from an original image file such that the file
size of the new image is smaller. The reduction in file sizemay be at the expense of
some image quality. (Note that the file size is what is reduced, not the dimensions of the
image itself.)See also "Lossless" and "Lossy".

Compression ratio

The amount or degree of reduction in file size, expressed as the ratio of the nominal file
size to the target size. Because nominal size is used, compression ratios from
compressed formats, e.g. JPEG, can bemisleading. For example, consider a 50MB raw
file compressed to a 10MB JPEG file: this is 5:1 compression ratio. Performing a further
10:1MrSID compression on that 10MB JPEG file will produce a 5MB MrSID file, not a
1MB file, because the 10:1 is relative to the image's nominal size and not it's current
physical file size. See also "Nominal image size".

Delegate

- 96 -

Glossary

An abstract class used to implement callbacks. TheMrSID SDK uses delegates for
situations such as detecting interrupts or reporting progress during a decode operation.

Dynamic range

The range values of the samples of an image.

Dynamic range can be expressed in two forms, "min/max" and "window/level". In the
first form, the range is expressed usingminimum andmaximum values. In the second
form, the range is expressed with a "window" value equal to the size of the range, for
example (max-min+1), and a "level" value equal to themidpoint of the range, for
example (min+max)/2. Window and level correspond roughly to the concepts of
"contrast" and "brightness", respectively.

Some images, notably those with 16-bit data, often display as "very dark" because the
full 16-bit range of the sample size is not used by the actual sample values; dynamic
range information can be used to scale or stretch the data for better presentation. The
figure below illustrates the dynamic range of a 10-bit image (log scale).

Figure 4: Dynamic range of a 10-bit image (log scale)

Endianness

the order in which bytes in amultibyte word are stored. In a big endianmachine themost
significant byte of the word is stored at the lowest address of the word; in a little endian
machine, themost significant byte is stored at the highest address. Big endian
machines include SPARC and PowerPC. Little endian processors include the Intel x86.

The table below shows the effects of endianness where:

unsigned int value = 0x01020304;
unsigned char* p = (unsigned char*)&value;

- 97 -

MrSID Decode SDK9.5 for Raster – User Manual

Address
Little Endian

Value
Big Endian

Value

*p 0x04 0x01

*(p+1) 0x03 0x02

*(p+2) 0x02 0x03

*(p+3) 0x01 0x04

Figure 5: Endiannessand Byte Order

Frequency balance

A parameter used inMrSID to determine the emphasis given to edges and “flat” color
areas when performing compression. In MG2 encoding this parameter is called gamma.
A lower value creates more defined edges, while a higher setting creates softer edges.
See also "Weight" and "Sharpness".

Gamma

See "Frequency balance".

GML

An acronym for geography markup language, an XML-based language for representing
many types of geographic content. Using GML primitives one can describe coordinate
reference systems, units of measure, features, geometries and topologies, coverages,
annotations andmore.

JPEG

A widely used image format that supports image compression. JPEG is an ISO
standard. See also JPEG 2000.

JPEG 2000

A new, wavelet-based image format designed for high-quality imagery and advanced
imaging workflows. JPEG 2000 is an ISO standard. See also JPEG, MrSID.

K-weight

A parameter used inMrSID to determine the emphasis given to the K (black) band of a
CMYK image when performing compression.

Level

See "Zoom level".

Lossless

An image that contains a representation of all of the original pixel values; when decoded,
a lossless image is mathematically identical to the original. Note that lossless refers
only to the image data and implies nothing about the imagemetadata. See also "Visually
lossless" and "Lossy".

- 98 -

Glossary

Lossy

An image that contains an approximation of all of the original pixel values; when
decoded, depending on the quality of the compression, a lossy imagemay appear to be
a poor representation of the original, visually indistinguishable from the original, or
anywhere in between. The perceived image quality is affected by changes in the
sharpness of edges, color balance, reduced resolution, and so forth. See also
"Lossless" and "Visually lossless".

Magnification

The scale at which an image is represented. Magnification is expressed as a positive
floating point value: 1.0 represents the full image (at “one to one”), 0.5 represents a half-
scale (lower resolution) version, and 2.0 represents a double-scale (expanded)
resolution. Themagnification valuemust be a power of two. See also "Resolution",
"Scale" and "Zoom level".

Metadata

Information about the image, as opposed to the actual image data (pixels). Metadata
can refer to basic image properties such as width, height, colorspace, etc., but generally
refers to less fundamental properties such as geospatial position, name of image
creator, image date, etc.

MG2

MrSID Generation 2. The earliest released version of theMrSID image format. MG2 is
limited to lossy encoding and does not support optimization.

See also "MrSID", "MG3" and "MG4".

MG3

Mrsid Generation 3. The second released version of theMrSID image format. MG3
supports lossless encoding, image optimization, and composite images. See also
"MrSID", MG2 and "MG4".

MG4

Mrsid Generation 4. The current version of theMrSID image format. MG4 supports most
of the features that MG2 andMG3 support, but also supports alpha channels,
multispectral and hyperspectral imagery and improved composite mosaics. See also
"MrSID", MG2 and "MG3".

Mosaic

A composition of two or more images to form a new, larger image. Positioning of the
images is generally based on geospatial coordinates.

MrSID

Acronym abbreviatingMultiresolution Seamless Image Database. MrSID is a wavelet-
based image format designed for large, high-quality geospatial imagery. There are two
versions of MrSID, known as MG2, MG3 andMG4. See also "MG2", "MG3" and "MG4".

Nodata color

- 99 -

MrSID Decode SDK9.5 for Raster – User Manual

Same as "Transparency color". The pixel value that defines the color of the image that
corresponds to a region of the image that has no valid data. Note that a transparency
region of the image is contained with the image extents, whereas the background color
is used for regions outside of the image. This property is most often used inmosaicking.
See also "Background color".

Nominal image size

The size of an image, in bytes, defined by the product of

image width x image height x number of bands x number of
bytes per sample

See also "Physical image size".

Optimization

The process of creating anMG3 orMG4 image from a sourceMG3 orMG4 image, such
that the new image is better suited for some purpose or workflow. Themost common
optimization is compression; other optimization operations include cropping and
removal of resolution levels.

Physical image size

The size of an image, in bytes, as defined by the file size required to represent the image
on disk. See also "Nominal image size".

Pixel

A set of samples, together making up a single (x,y) point in the image; for example, a
100 x 200 RGB image will contain 20,000 pixels. See also "Sample".

Resolution

Definition #1) The scale at which an image is represented as expressed in a wavelet
level. The pixel resolution at level 0 (zero) is equal to amagnification of 1.0. See also
"Magnification", "Zoom level" and "Scale".

Definition #2) Ground units per pixel as used for georeferencing (a value stored in the
metadata of an image).

Sample

A value representing amagnitude or intensity, for example a red sample in an RGB
pixel. A 100 x 200 RGB image will contain 60,000 samples. See also "Pixel".

Scale

The resolution or magnification at which an image is represented. Scale is represented
as a signed integer, corresponding to the negative of the log of themagnification. That
is, magnifications of 1.0, 0.5, and 2.0 are equivalent to scales of 0, 1, and -1,
respectively. See also "Magnification", "Zoom level" and "Resolution".

Scene

The region of an image to be decoded, as defined by an upper-left position, width and

- 100 -

Glossary

height dimensions, andmagnification.

Sharpness

A parameter used inMrSID to determine the sharpness of boundaries between different
areas of an image when performing compression. See also "Frequency balance" and
"Weight".

Stream

An abstract interface to an arbitrary chunk of data, represented as an array of bytes;
examples of data that can be represented as streams include files, memory buffers, and
sockets.

Strip height

The number of rows of an image to be processed in each step of an image read
operation. Use of smaller strip heights may reducememory requirements, but at a
possible performance loss.

Transparency color

Same as "Nodata color". See also "Background color".

Visually lossless

An image that contains a close approximation of all of the original pixel values; when
decoded, a visually lossless image appears to a typical viewer as being
indistinguishable from the original. A visually lossless image is a lossy image. See also
"Lossless" and "Lossy".

Wavelet

A mathematical representation of a pixel value that varies by frequency and duration; in
wavelet space, the importance of a pixel depends on the values of its neighboring
pixels. Wavelet-based image formats are able to present images at multiple levels of
resolution without the overhead of pyramidal formats.

Weight

A parameter used inMrSID to determine the emphasis given to the grayscale portion of
a color image when performing compression. See also "Frequency balance",
"Sharpness" and "K-weight".

World file

A text file that contains geospatial positioning information to augment or replace the
geospatial information in an image file.

Zoom level

The scale at which an image is represented. Levels are generally expressed with signed
integer values. An image “at scale 1” has half the width and height of the original. See
also "Scale", "Magnification" and "Resolution".

- 101 -

Index

A

About LizardTech 93

Alpha bands 32

Architecture and design 11

B

Background data 90

Base classes 21

Base enums 21

Basic typedefs 19

BBB files 68

Buffers 23

C

C API 45

decode support 46

image support 45

metadata support 46

streams 46

C header file 19

Classes

base 21

image 22

J2KImageReader 35

LTIFileSpec 19

LTIGeoFileImageWriter 22

LTIImage 12

LTIImageFilter 12

LTIImageReader 12

LTIImageStage 12

- 103 -

LTIImageStageManager 13

LTIImageWriter 12

support 19

Coding conventions 59

Command line applications 47

common switches 47

mrsiddecode 49

mrsidinfo 47

mrsidviewer 55

Composites 32

Compression 29

Concrete image filters and writers 25

Creator Deletes rule 18

D

Decode support (C API) 46

Decompression 29

Developer website 8

E

Enums 21

F

Floating point data 28

Formats 28

G

Georeferencing

NITF imagery 81

GeoTIFF metadata 75

Glossary 95

MrSID Decode SDK9.5 for Raster – User Manual

I

Image classes 22

Image filters 11, 25

Image quality 28

Image readers 11

Image stages 11

Image support (C API) 45

Image writers 11, 26

Initializations 18

install.txt 7

Installation 7

J

JPEG2000

GeoTIFFmetadata 75

reader 35

support for 35

K

KeyFeaturesof MrSID 28

L

LTIFileSpec class 19

M

Metadata 30

GeoTIFF metadata for JPEG2000 75

NITF input 38

support for 43

tags 84

Metadata database 44

Metadata record 43

Metadata support (C API) 46

Metadata tags 44

MG4,MG3

andMG2 27

MrSID

alpha bands 32

compression 29

datatypesand formats 28

decompression 29

Generation 2 27

Generation 3 27

Generation 4 27

image quality 28

key features 28

metadata 30

multispectral 31

optimization 30

performance 29

support for 27

tiling and composites 32

MrSID readers 33

mrsiddecode 49

mrsidinfo 47

mrsidviewer 55

Multispectral 31

N

Negative y-resolutions 89

NITF

georeferencing 81

input metadata 38

reader 37

support for and compliance 37

NoMagic rule 18

- 104 -

Index

Nodata and background pixels 90

O

Optimization 30

Other LizardTech products 93

Overrides 62

P

Performance 29

Pipeline design 11

image stages 11

implementation 12

Preprocessor constants 19

R

Raw readers and writers 23

Readers and writers

JPEG2000 reader 35

MrSID readers 33

NITF reader 37

raw 23

Reference counting 18, 64

Resolution

negative 89

S

Scene and buffer management 23

Scenes 14

Status codes 18

Status strings 19

Streams 20

technical notes 65

Streams (C API) 46

Strip-based decoding 13

Support classes 19

System requirements 5

Android 6

iOS 6

Linux 6

Macintosh 6

Windows (32-bit) 6

Windows (64-bit) 5

T

Technical notes

BBB files 68

coding conventions 59

georeferencing NITF imagery 81

GeoTIFF metadata for JPEG2000 75

metadata tags 84

negative y-resolutions 89

nodata and background pixels 90

overrides 62

streams 65

world files 67

zoom levels 57

Technical support 8

before you contact us... 9

Tiling 32

W

World filles 67

Z

Zoom levels 57

- 105 -

	Introduction
	Features
	How to Read this Manual
	SDK Contents

	Getting Started
	System Requirements
	Installation
	Example Code
	Technical Support

	Architecture and Design
	Pipeline Design
	Strip-Based Decoding
	Scenes
	Multi-Threading
	Other Design Considerations

	The Support Classes
	Preprocessor Constants and Basic Typedefs
	Status Strings
	The LTIFileSpec Class
	Streams

	The SDK Base Classes
	Base Enums
	Base Classes
	The Image Classes
	The Raw Readers and Writers
	Scene and Buffer Management

	Concrete Image Filters and Writers
	Image Filters
	Image Writers

	MrSID Support
	MG2, MG3 and MG4
	Key Features of MrSID
	MrSID Readers

	JPEG 2000 Support
	The JPEG 2000 Reader

	NITF Support
	The NITF Reader
	NITF Input Metadata

	Metadata Support
	The Metadata Record
	The Metadata Database
	The Tags

	The C API
	Image Support
	Decode Support
	Metadata Support
	Streams

	Command Line Applications
	Switches Common to All Tools
	mrsidinfo
	mrsiddecode
	mrsidviewer

	Appendix A - Technical Notes
	Zoom Levels
	Coding Conventions
	Overrides
	Reference Counting
	Notes on Streams
	Notes on World Files
	Notes on BBB Files
	GeoTIFF Metadata for JPEG 2000
	Georeferencing of NITF Imagery
	Metadata Tags
	Negative y-Resolutions
	Nodata and Background Pixels

	Appendix B - Company and Product Information
	About LizardTech
	Other LizardTech Products

	Glossary
	Index

