
LizardTech

MrSID Decode SDK 9.5
for LiDAR

User Manual



Copyright © 2009–2015 Celartem, Inc., doing business as LizardTech. All rights reserved.
Information in this document is subject to change without notice. The software described in this
document is furnished under a license agreement or nondisclosure agreement. The softwaremay be
used or copied only in accordance with the terms of those agreements. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or any means electronic or
mechanical, including photocopying and recording for any purpose other than the purchaser's
personal use without the written permission of LizardTech.

LizardTech, MrSID, GeoExpress and Express Server are registered trademarks in the United States
and the LizardTech, GeoExpress, Express Server, ExpressView andGeoViewer logos are
trademarks, and all are the property of Celartem Inc. doing business as LizardTech. Unauthorized
use is prohibited.

LizardTech acknowledges and thanks themany individuals and organizations whose efforts have
made our products possible. A full list of copyright, trademark and credit information is available in the
document "Copyrights, Trademarks and Credits" installed automatically with your product.

LizardTech
1008Western Avenue, Suite 403
Seattle, Washington, USA 98104
206-652-5211
www.lizardtech.com

- ii -

http://www.lizardtech.com/


Table of Contents

Chapter 1: Introduction 1
SDK Contents 1
Architecture and Design 3

Chapter 2: Getting Started 5
System Requirements 5
Installation 6
Technical Support 6

Chapter 3: The SDK Classes 9
The PointSource Class 9
The PointWriter Class 10
The Buffer Management Classes 11
The PointInterator Class 12
Text Point Readers and Writers 13
The MG4PointReader Class 13
The Support Classes 13
The Metadata Class 14

Chapter 4: Code Examples 17
Chapter 5: MrSID Decode SDK Command Line Tools 19
Decompressing MG4 Files 19
Viewing File Information 21

Appendix: Company and Product Information 25
About LizardTech 25
Other LizardTech Products 25

Index 27

- iii -





Chapter 1: Introduction
Thank you for using LizardTech® products. This is the documentation for theMrSID®Decode
Software Development Kit (SDK) for LiDAR data. The SDK provides a framework for extracting
LiDAR data fromMrSID Generation 4 (MG4™) files.

LiDAR data is becoming increasingly important to many aspects of business, industry, and
government. Because of the enormous quantities of data involved, the use of LiDAR files has been
hindered by storage and bandwidth constraints. LizardTech's technologies and products solve these
problems and lay the groundwork for truly dynamic LiDAR file access.

Lossless compression with LizardTech LiDAR Compressor enables users to turn giant point cloud
data sets into efficient MrSID files that retain 100 percent of the raw data at just 25 percent or less of
the original file size (lossless compression). If storage requirements are critical, they can reduce
LiDAR file sizes by 90 percent or more by choosing a higher compression ratio and letting LiDAR
Compressor select the best way to reach a desired file size (lossy compression).

Used as the foundation for LiDAR Compressor, theMrSID Decode SDK is a robust toolkit suitable
for complex application development needs.

NOTE: TheMrSID format supports raster data as well as LiDAR data, but a separate set of tools
and libraries is used in supporting raster data in theMrSID format. Separate documentation is
available in your installation for integrating support for raster-encodedMrSID files.

MrSID Generation 4 (MG4)

The industry standardMrSID format has been trusted as a raster format by geospatial professionals
since 1992 and supported in virtually all GIS applications. With the release of LiDAR Compressor
LizardTech unveiled a new and improved version of the format, MrSID Generation 4 (MG4). MG4
enables users to view and access their LiDAR data quickly.

SDK Contents
The contents of theMrSID Decode SDK include the following:

Documentation

Cover documentation

The fileREADME.txt in the top-level directory and the file CHANGES.txt in the doc directory contain
information about late changes to the SDK.

License

In the top-level directory, the file LICENSE.pdf contains the complete licensing information for this
SDK.

User Manual

The User Manual (this document) can be found at doc/UserManual/index.html.

- 1 -



LizardTechMrSID Decode SDKUser Manual

Reference Manual

The ReferenceManual, containing detailed information about each class andmethod, can be found at
doc/ReferenceManual/index.html.

Copyrights, Trademarks and Credits

Information about licenses and copyrights, as well as trademark information and acknowledgments,
are found in the document Copyrights_Trademarks_and_Credits.pdf in the top-level
directory.

Headers and Libraries

Headers

The header files for theMrSID Decode SDK are located in subdirectories under the include
directory. (The ReferenceManual provides full documentation for these headers.)

Libraries

The libraries for the SDK are located in the lib directory.

Sample Applications

Command-line tools

Several tools are provided in the bin directory to aid in development, debugging, and testing. (For
information on using these tools, see "Chapter 5: MrSID Decode SDK Command Line Tools" on page
19)

Example Code

A number of example functions are included in the directory examples/src. The test files used by
these examples are located in examples/data. (The ReferenceManual provides additional
information about these examples.)

NOTE: As a further resource, sample LiDAR images are available for you to work with at
http://bin.us.lizardtech.com/lidar/LT_LiDAR_Sample_Data.zip.

Language Bindings

Wehave added experimental language bindings for C#, Python and Ruby. They are located in the
directory contributions/SWIG. Please see the README.txt in that directory for more details.

- 2 -



Architecture and Design
This section provides an overview of the architecture and some insight into the design philosophy of
LizardTech's MrSID Decode SDK.

Basic Terminology

Point – A location in three-dimensional (3D) space with non-optional attributes (X,Y,Z) and optional
attributes such as scan angle, pulse intensity, and color.

Channel – All the values for a given attribute. For example, the X channel is all the X values for a
given point cloud.

Class Hierarchy

TheMrSID Decode SDK is designed around twomajor classes: objects that are sources of LiDAR
point data and objects that are destinations of LiDAR point data. The sources are derived from the
PointSource class, and the destinations are derived from the PointWriter class. For the SDK,
we deal mainly with he PointSource class.

Themost interesting subclass of the PointSource class is MG4PointReader. The
PointSource has two types of methods. The first is for getting properties about the point cloud, and
the other type is for accessing the point cloud itself, either the entire cloud or subsets thereof.

Specifying a Region of Interest

When extracting points from the point cloud youmust specify the region you wish to extract from,
which we call the region of interest. TheMrSID Decode SDK uses a bounding box to specify the
region of interest.

If you wish to extract all the points in a point cloud, youmay do it in either of two ways:

l use the bounding box of the point source
l use -HUGE_VAL (-infinity) to +HUGE_VAL (+infinity) for the X,Y and Z ranges

Using a bounding box generally defines far more points than a user needs, so when extracting points
from a cloud, youmust also specify the fraction of the point cloud that you wish to extract. For
example if you only want every 20th point, specify 0.05 (1/20) as the fraction value. Use 1.0 when you
want all the points.

Point Cloud Data Buffers

When extracting points we use the PointData class to pass around parts of the point cloud among
functions. This class is a group of channel buffers for the channels that are to be extracted (see "The
Buffer Management Classes" on page 11).

Programming and Memory Model

TheMrSID Decode SDK separates object allocation and object initialization. This means the
constructors do not take arguments and classes have one or more init()methods. This makes it
easier to work with exceptions and to chain object constructors.

- 3 -



LizardTechMrSID Decode SDKUser Manual

The SDK chooses to use reference counting for objects with long or unknown life spans. The base
class for reference counting is Object. Its methods, Object::retain() and
Object::release() increment and decrement the reference counter. Functions andmethods that
start with “create” create a new reference counted object with a count of one. It is the responsibility of
the “create” caller to release the object when done with it using Object::release(). When you
retain a pointer to an Object youmust retain the object using Object::retain(), until that
pointer goes out of scope, at which time youmust release the object.

See http://en.wikipedia.org/wiki/Reference_counting for more information on
reference counting.

NOTE: The SDKs naming conventions are patterned after those in Objective C.

Thread Safety

TheMrSID Decode SDK is thread safe. Once the PointSource has been initialized any number of
threads can use the PointSource instance. The stateful (thread-specific) information for the point
extraction is stored in the PointIterator class.

Floating Point Quantization

Quantization is a way to convert floating point values to integer values. This facilitates lossless
wavelet compression of LiDAR data. LAS files, which contain floating point values, are quantized as
part of their storage. TheMG4 format quantizes because it uses an integer wavelet transform to
achieve lossless compression. The result is that, even with the quantization, LAS files can be
compressed losslessly in MG4.

If you are doing any error analysis youmust factor the quantization scale into the error bound
calculation.

Quantization in theMrSID Decode SDK uses the following conversions between floating point and
integer space:

<floating point value> = scale * <integer value> + offset

<index value> = floor((<floating point value> - offset) / scale +
0.5)

In going from integer space to floating point space and back again using the abovemethods, the index
space values do not change. This stability minimizes the conversion error.

- 4 -

http://en.wikipedia.org/wiki/Reference_counting


Chapter 2: Getting Started
This chapter provides some preliminary information to get you started using theMrSID Decode SDK.
The code examples (see "Chapter 4: Code Examples" on page 17) should give you enough
information to determine what level of SDK support your own application will require.

System Requirements
TheMrSID SDK is a set of C++ libraries that must be used in conjunction with the specific
development environment for your platform. The supported configurations are listed below.

For optimal performance, verify that your systemmeets the followingminimum recommended
hardware requirements:

l 2GHz processor
l 2GB of RAM

NOTE: Please contact LizardTech for additional distributions for other platforms.

Windows
Your development environment Target platform Library to use

Visual Studio 2013 on Windows
Server 2008 or newer

32-bit Windows Vista/ 7/ 8/ Server 2003/
Server 2008

Visual C++ 12.0
(VC12.0) / 32-bit

Visual Studio 2013 on Windows
Server 2008 or newer

64-bit Windows Vista/ 7/ 8/ Server 2003/
Server 2008

Visual C++ 12.0
(VC12.0) / 64-bit

Visual Studio 2015 on Windows
Server 2008 or newer

32-bit Windows 7/ 8/ 10/ Server 2008 Visual C++ 14.0
(VC14.0) / 32-bit

Visual Studio 2015 on Windows
Server 2008 or newer

64-bit Windows 7/ 8/ 10/ Server 2008 Visual C++ 14.0
(VC14.0) / 64-bit

Linux
Your development environment Target platform Library to use

GCC 4.8.2 on RHEL 6.8/64 64-bit RHEL 6.8/ RHEL 7.0 GCC 4.8.2 / 64-bit

GCC 5.3.1 on RHEL 6.8/64 64-bit RHEL 6.8/ RHEL 7.0/ CentOS 7.0 GCC 5.3.1 / 64-bit

NOTE: TheMrSID libraries for Red Hat Linux are built using the Red Hat Developer Toolset on Red
Hat Enterprise Linux 6.8. Execution of applications built using this SDK is only supported on RHEL
6.8 or later. (TheGCC 5.3.1 compiler is included in version 4.1 of the Software Collections
Developer Toolset.)

- 5 -



LizardTechMrSID Decode SDKUser Manual

Macintosh
Your development environment Target platform Library to use

Clang 7.0 (part of Xcode 7.3) on
Mac OS X 10.11

macOS 10.11 or later Mac OS X 10.11 /
Universal / Darwin 15

Clang 8.0 (part of Xcode 8.2) on
macOS 10.12

macOS 10.12 or later Mac OS X 10.12 /
Universal / Darwin 16

iOS
Your development environment Target platform Library to use

Clang 7.0 (part of Xcode 7.3) on
Mac OS X 10.11

OS: iOS 8 and higher
Processor: ARMv7/ ARMv7s/ ARM64/
x86 and x86-64 simulators

Xcode 7.3 iOS 8 /
Universal

Clang 8.0 (part of Xcode 8.2) on
macOS 10.12

OS: iOS 8 and higher
Processor: ARMv7/ ARMv7s/ ARM64/
x86 and x86-64 simulators

Xcode 8.2 iOS 8 /
Universal

Android
Your development environment Target platform Library to use

Android NDK 13b on Ubuntu
Desktop 12.04

OS: Android API Level 12 and higher
Processor: armeabi/ armeabi-v7a/ x86/
arm64-v8a/ x86_64

GCC 4.9 / Universal

Installation
No specific installation is required to use theMrSID Decode SDK beyond copying the SDK contents
from themedia provided (CD, ISOCD image, archive from FTP site, etc.) to your local computer.

Technical Support
Most technical issues can be resolved using the various resources you have available. In addition to
the product documentation and the README file, LizardTech offers a knowledge base and product
updates on the LizardTech website.

Knowledge Base

http://www.lizardtech.com/support/kb/

The LizardTech Knowledge Base contains articles about known technical and usage issues and is
frequently updated.

Developer Website

http://developer.lizardtech.com

- 6 -

http://www.lizardtech.com/support/kb
http://developer.lizardtech.com/


Chapter 2: Getting Started

The LizardTech DeveloperWebsite provides you with the tools you need to support viewingMrSID
format within your application: downloadable SDKs, technical notes and documentation and a link to
additional email support.

Community Forums

http://www.lizardtech.com/forums/

The forums are a place to engage in intelligent discourse with the geospatial community. Ask
questions, provide answers, and share product usage tips with other Lizardtech customers around
the world.

Product Updates

http://www.lizardtech.com/products

Updated versions of LizardTech viewer tools are available for download at no cost.

Support Plans

http://www.lizardtech.com/purchase/other.php

Protect your investment in LizardTech software by participating in a LizartTech support plan. For
more details, please contact your regional LizardTech office.

Contacting Technical Support

http://www.lizardtech.com/support

To contact technical support, visit the website at the above URL and follow links to the LizardTech
Knowledge Base or the Product Activation page. A Contact Form is also provided for issues that
require further assistance.

In an emergency, call 206-902-2845 between the hours of 8 AM and 5 PM Pacific Time.

IMPORTANT: Please have the following information available to assist in resolving your problem:

l Which version of theMrSID Decode SDK you are running
l Other LizardTech products you have installed
l Which operating system you use
l How much free hard drive space your computer has
l How much RAM your computer has
l Version of compiler
l Copy of source code demonstrating the problem, simplified as much as possible
l Relevant test data to allow us to reproduce the problem
l Copy of compiler error messages if appropriate

- 7 -

http://www.lizardtech.com/forums
http://www.lizardtech.com/products
http://www.lizardtech.com/purchase/other.php
http://www.lizardtech.com/support




Chapter 3: The SDK Classes
This chapter describes the important classes of theMrSID Decode SDK.

The PointSource Class
The PointSource class is the root class for accessing LiDAR data. Following is a description of
each of themethods.

Methods for Accessing Properties

Number of Points

To access the number of points, call PointSource::getNumPoints().

Channels

A channel is all the values for a given attribute. For example, the X channel is all the X values for a
given point cloud.

To access the channel information, call PointSource::getNumChannels() and
PointSource::getPointInfo().

For more information about channels, see "The ChannelInfo Class" on page 11 and "The PointInfo
Class" on page 12.

Quantization

If you call the functions PointSource::getScale() and PointSource::getOffset()and
NULL is returned, the file is not quantized. Otherwise it returns an array of doubles representing the
quantization scale and offset values for the X, Y and Z channels.

Even when the LiDAR file is quantized the X, Y, Z value that are extracted form the point cloud are
floating point values, not the integer indexes.

For more information about quantization, see "Floating Point Quantization" on page 4.

Metadata

Metadata is auxiliary information about the point cloud stored as key-value pairs. Metadata can be
any information the user wishes to add. You can store strings, arrays of floating point values and raw
binary data.

To access the channel information, call PointSource::loadMetadata().

For more information see "TheMetadata Class" on page 14.

Classification Names

TheMrSID Decode SDK stores the classification name as an array of strings. You can use the
ClassId channel to index into the ClassIdName array.

- 9 -



LizardTechMrSID Decode SDKUser Manual

To access the classification names, call PointSource::getNumClassIdNames() and
PointSource::getClassIdNames().

Methods for Accessing the Point Cloud

Using a Point Iterator

A point iterator is an iterator that gets points for a given bounds.

The function PointSource::createIterator() returns an iterator for a given bounds, fraction
and set of channels (see "Specifying a Region of Interest" on page 3).

To extract the points, call the function PointIterator::getNextPoints(), which walks the
specified region of the point cloud until there are nomore points to extract (for an example, see
"Chapter 4: Code Examples" on page 17).

For more information see "The PointInterator Class" on page 12.

Using Bounds and a Fixed Number of Points

Using bounds and a fixed number of points to extract is much simpler but less versatile.

PointSource::read() fills a PointData object with the points that most uniformly represent the
specified region of interest (for an example, see "Chapter 4: Code Examples" on page 17).

The PointWriter Class
The PointWriter class is the base class for writing LiDAR data to files. Following is a description
of each of themethods.

Methods for Setting Up and Writing the Output File

Metadata

By default the writers to not copy in themetadata from the point source. It is the responsibility of the
application to retrieve themetadata from the source, modify it as necessary and then pass it to the
writer using PointWriter::setMetadata(). You can also retrieve themetadata for viewing by
calling PointWriter::getMetadata(),

Quantization

LAS andMG4 files require quantization. By default the writer uses the same quantization as the input
point source (see "Quantization" on page 9). However, you can override that behavior by setting
quantization explicitly using PointWriter::setQuantization(). (For more information about
quantization, see "Floating Point Quantization" on page 4).

To access the quantization of the output file, you can use PointWriter::getScale() and
PointWriter::getOffset().

NOTE: These functions will return NULL if the input data is not quantized.

- 10 -



Chapter 3: The SDKClasses

Writing the File

Towrite the output file, call PointWriter::write(). This function writes to a file the point cloud
for a given bounds, fraction and set of channels (see "Specifying a Region of Interest" on page 3).

The Buffer Management Classes
When extracting points we use the PointData class to pass around parts of the point cloud among
functions. This class is a group of ChannelData classes for the channels that are to be extracted.

The ChannelInfo Class

A channel is all the values for a given attribute. For example, the X channel is all the X values for a
given point cloud.

The three aspects of a channel are:

l name
l data type (floating point, signed integer, etc., stored as a DataType enum)
l number of bits of precision

NOTE: For floating point data types, the number of bits of precision is the number of bits you need
to store the quantized point value as an integer (for more information, see "Floating Point
Quantization" on page 4).

TheMrSID Decode SDK handles the following channels:

X, Y and Z (Required) The X, Y and Z values specify the
physical location of the point.

Intensity Intensity is the integer representation of the
pulse return magnitude.

ReturnNum The return number is a number that uniquely
and sequentially identifies each return from a
given output pulse.

NumReturns The number of returns is the total number of
returns from an output pulse.

ScanDir The scan direction is the direction at which the
scanner mirror was traveling at the time of the
output pulse.

EdgeFlightLine The edge of flight line value is the last point on
a given scan line before it changes direction.
The edge of flight line has a value of 1 only
when the point is at the end of a scan (when
the mirror is not moving).

ClassId The classification identifier is an index into the

Standard Channels

- 11 -



LizardTechMrSID Decode SDKUser Manual

ClassIdName array of the PointSource
instance

Continued >
ScanAngle The scan angle is an integer representation of

the angle off of nadir at which the pulse was
output. Negative scan angle value represents
an angle to the port side of the plane, and a
positive scan angle value represents an angle
to the starboard side. Zero is nadir.

UserData The user data value is any integer value the
user wishes to add.

SourceId The point source identifier identifies a file as
the original source of the data.

GPSTime The GPS time value is the time at which a
given point was sampled.

Red, Green, Blue The red, green and blue values represent the
color of the point.

<UserDefinedChannelName>This channel can be used by the creator of the
file for any additional data they would like to
include.

The PointInfo Class

The PointInfo class is a group of ChannelInfo classes that are used to store information about
all the channels of a point source. This class is used to obviate passing around arrays of
ChannelInfo objects and the associated array lengths, which was required when using
PointSource::createIterator() and PointData::init().

The ChannelData Class

The ChannelData class is a derived class of ChannelInfo which adds a data buffer and length.

The PointData Class

The PointData class is a group of ChannelData classes that are used in the point extraction calls
PointIterator::getNextPoints() and PointSource::read().

The PointInterator Class
The PointIterator class is the primary class for accessing the point data in a LiDAR file. To
create an iterator, call PointSource::createIterator().

The PointIterator class only has one public method, getNextPoints(), which extracts
points out of the point cloud. For each time you call getNextPoints() the function fills the given
PointData buffer and returns the number of points that it extracted. When you have extracted all the
points the function returns zero (0).

- 12 -



Chapter 3: The SDKClasses

For an example, see "Chapter 4: Code Examples" on page 17.

Text Point Readers and Writers
The simplest andmost flexible way of storing LiDAR data is using column delineated text
(ASCII) files.

The TXTPointReader Class

This is a concrete implementation of the PointSource class for reading text files.

The TXTPointWriter Class

This is a concrete implementation of the PointWriter class for writing text files.

The MG4PointReader Class
The MG4PointReader class is the class that you will use to enable your application to read LiDAR-
basedMG4 files. MG4PointReader is a concrete implementation of the PointSource class (see
"The PointSource Class" on page 9).

Opening an MG4 File

There are twomethods of opening anMG4 file:

l init() with an IO object
l init() with a file name

The first is the preferredmethod; create a FileIO object for the file name and then pass the
FileIO object to MG4PointReader::init()(see "The IO Classes" on page 13).

The secondmethod takes a string for the file name.

NOTE: The string used in the secondmethod is a native codepage string, which is much simpler to
use for testing but can cause problems if you can't represent the file path in the codepage.

For an example of MG4PointReader class usage, see "Chapter 4: Code Examples" on page 17.

The Support Classes
TheMrSID Decode SDK includes several supporting classes, however, you will probably only need
to engage the IO classes and the Bounds class.

The IO Classes

The SDK provides an abstract mechanism for reading and writing data. Thesemechanism constitute
the IO class.

The IO class provides methods for opening and closing the resource, reading and writing of byte
arrays at a given offset in the resource, and getting and setting the resource size. This model is
different from the UNIX stdio interfaces in that the file position is not stored in the IO object. It

- 13 -



LizardTechMrSID Decode SDKUser Manual

mimics the POSIX pread() and pwrite() interfaces. This model ensures the thread safety of the
IO subclasses, enabling you to read from the IO instances onmultiple threads simultaneously.

The FileIO Class is a concrete implementation of the IO class for reading files from and writing files
to disk.

The Bounds Class

The Bounds class defines a three-dimensional bounding box used to define regions of interest. This
class has a one-dimensional interval for each of the X, Y and Z axes.

NOTE: The one-dimensional interval used by the Bounds class has member variables named min
and max that may conflict with the min() and max()macros in Windows.h. To avoid this conflict,
we undefined the min() and max()macros.

The Metadata Class
The Metadata class is a container for storingmetadata about the point cloud. It is a key-value pair
container that you can use to store strings, arrays of floating point values and raw binary data
(BLOBs).

Each key-value pair has the following properties:

l key name
l description (optional)
l data type (string, reals, or BLOB,stored as a MetadataDataType enum)
l values and length

For a table of code examples included the SDK, see "Chapter 4: Code Examples" on page 17).

Known Metadata Key Names

TheMrSID Decode SDK recognizes six fixedmetadata key names and one key pattern, but will
accept any name. The seven recognized names are listed in the following table.

Name Data Type Description
FileSourceID string Identifies the source of the

data.
ProjectID string Identifies the project that the

data was acquired for.
SystemID string Identifies the hardware system

or the method by which the file
was made.

GeneratingSoftware string The software that created the
file.

FileCreationDate string Date the file was created in the
form yyyy-mm-dd

Metadata Key Names

- 14 -



Chapter 3: The SDKClasses

Name Data Type Description
PointRecordsByReturnCount array of reals Contains an array of point

counts per return
PreCompressionPointCount array of reals

of length 1
Used to store the number of
points that were in the input file
before it was
compressed/decimated.

LAS_BoundingBox array of reals
of length 6

Stores the bounding box of the
original LAS file if the source
was a LAS file.

<LAS VLR User
ID>::<Record ID>

BLOB The method we use to store
unrecognized variable length
records (VLRs) from LAS files.

- 15 -





Chapter 4: Code Examples
TheMrSID Decode SDK includes code samples that demonstrate the use of the SDK's different
interfaces.

The following C++ (.cpp) files are located in your examples/src directory.

UserTutorial.cpp OpeningMG4 files
Using the PointIterator to access the point cloud
Using PointSource::read() to access a fixed number of
points

DumpMG4Info.cpp Accessing the point cloud properties
Displayingmetadata

DecodeMG4ToTXT.cpp Using a PointWriter class
IterateOverPoints.cppUsing a PointIterator

Accessing channel values from a PointData object
support.cpp Using the FileIO class
UserTest.cpp Enables you to add your own test code to explore

the SDK

Code example files and what they demonstrate

Below, we walk through the UserTutorial.cpp example.

The following code opens anMG4 file:

FileIO *file = FileIO::create();
file->init("data/Tetons_200k.sid", "r");
MG4PointReader *pointSource = MG4PointReader::create();
pointSource->init(file);
file->release();

Now that the file is initialized, you can access the properties of the point cloud using the following
code:

PointSource::count_type numPoints = pointSource->getNumPoints();
size_t numChannels = pointSource->getNumChannels();
const PointInfo &pointInfo = pointSource->getPointInfo();

printf("Number of points: %lld\n", numPoints);
printf("Number of channels: %lu\n", numChannels);
for(size_t i = 0; i < numChannels; i += 1)

printf("Channel %lu: %s\n", i, pointInfo.getChannel
(i).getName());

- 17 -



LizardTechMrSID Decode SDKUser Manual

You can use either of the following twomethods to access the point cloud. In the first, we use the
PointIteratormechanism.

PointData buffer;
// create buffers for all the channels 1000 samples long
buffer.init(pointInfo, 1000);
// create an iterator of the whole point cloud with all the
channels
PointIterator *iter = pointSource->createIterator(pointSource-
>getBounds(),

1.0,
pointInfo,
NULL);

size_t count;
// walk the iterator
while((count = iter->getNextPoints(buffer)) != 0)
{

// do some thing with this chunk of the point cloud.
}
iter->release();

The secondmethod extracts a fixed number of points (10,000 in this case):

PointData buffer;
{

// only decode X, Y, Z
PointInfo pointInfo;
pointInfo.init(3);
pointInfo.getChannel(0).init(*pointSource->getChannel(CHANNEL_

NAME_X));
pointInfo.getChannel(1).init(*pointSource->getChannel(CHANNEL_

NAME_Y));
pointInfo.getChannel(2).init(*pointSource->getChannel(CHANNEL_

NAME_Z));
buffer.init(pointInfo, 10000);

}

pointSource->read(Bounds::Huge(), buffer, NULL);
// do some thing with the points

Now we'll do a little housecleaning. When you're done with your point source, you should release it:

pointSource->release();
pointSource = NULL;

- 18 -



Chapter 5: MrSID Decode SDK Command Line Tools
TheMrSID Decode SDK includes several command line tools youmay find useful for decompressing
MrSID Generation 4 (MG4) files or viewing information about MG4, LAS or text LiDAR files. These
tools are located in the bin directory.

Decompressing MG4 Files
TheMrSID Decode SDK includes a command line tool called lidardecode. Located in the bin
directory, lidardecode enables you to decompress MG4 files to LAS or text files.

Usage

The only required parameters are -inputFile (or -i), which specifies the input file name, and -
outputFile (or -o), which specifies the output file name.

If no output format (-outputFormat or -of) is specified, the file extension specified in the -
outputFile parameter is used as the output format.

If no output format (-outputFormat or -of) is specified and no file extension is specified in the
output file name , then lidardecode decodes the file to the default format (text) and appends the
default suffix (.txt) to the output file name.

Youmay add other options and parameters as described in the table of switches below. The order of
the switches in the syntax has no bearing on the output.

For examples of how to form a command, see "Examples" on page 20.

-inputFile (-i) string (Required) Specifies name of input MG4
file.

-outputFile (-o) string (Required) Specifies name of output file. If
no file extension is provided, default is to
concatenate a format suffix to input file.

-outputFormat (-of) string Specifies output format. Acceptable values
are TXT, LAS10, LAS11, LAS12. Default is
TXT.

-subsample (-s) unsigned
integer

Tells lidardecode to subsample, taking
every n-th point. -s 2 selects one half the
file, -s 3 selects one third.

-crop (-c) FLOAT0
FLOAT1
FLOAT2
FLOAT3
FLOAT4

Tells lidardecode to crop to the
specified box (world coordinates: x-min, x-
max, y-min, y-max, z-min, z-max). A value
of -inf (for a minimum) or +inf
(maximum) means do not crop in that

lidardecode Switches

- 19 -



LizardTechMrSID Decode SDKUser Manual

FLOAT5 direction.
Continued >

-offset (-ofs) FLOAT0
FLOAT1
FLOAT2

Specifies the offset from which the points
will be specified (world coordinates: x[0], y
[0], z[0]. Default is to use the origin of the
bounding box.

-outFields (-ofld) string Tells lidardecode to include particular fields. By
default lidardecode outputs all those supported
by the output format and are in the input file.

x - x point values
y - y point values
z - z point values
i - intensity
r - return number
n - number of returns
d - scan direction
e - edge of flight line
a - scan angle
c - class id
p - source id
u - user data
t - GPS time
R - red
G - green
B - blue

-scale (-sc) FLOAT0
FLOAT1
FLOAT2

Specifies the scale (or precision) factor (x-
scale, y-scale, z-scale). Default is 0.001,
0.001, 0.001.

-h (-?) Displays a short usage message.
-help Displays a detailed usage message.
-version (-v) Displays version information.
-verbose (-V) Tells lidardecode to display more

verbose error messages.
-credits Displays credits and copyrights.

Examples

The following command uses theminimum required parameters and decodes to a text file called
"Exp_D2_1.txt".

lidardecode -i E:\Data\localTestImages\Exp_D2_1.sid -o Exp_D2_1.txt

- 20 -



Chapter 5: MrSID Decode SDKCommand Line Tools

The following command produces the same result as the previous one, but because the user wants to
change the output file name, the -o parameter has been included and the text output is explicitly
called for.

lidardecode -i E:\Data\localTestImages\Exp_D2_1.sid -o
E:\Data\localTestImages\Exp_D2_2.txt

The following command decodes to a LAS file.

lidardecode -i E:\Data\localTestImages\Exp_D2_1.sid -o
E:\Data\localTestImages\Exp_D2_1.las

The following command decodes to a text file called "Exp_D2_1.xyz" (any extension other than .las
results in a text file) and limits the data in the file to four fields (GPS time, x, y and z).

lidardecode -i E:\Data\localTestImages\Exp_D2_1.sid -o
E:\Data\localTestImages\Exp_D2_1.xyz -ofld txyz

Viewing File Information
TheMrSID Decode SDK includes a command line tool called lidarinfo. Located in the bin
directory, lidardinfo enables you to view the information in LAS or TXT files in text form.

Usage

The only required parameter for LAS files is -inputFile (or -i), which specifies the input file name.
Text input files also require the -parse (or -p) parameter, which describes the order of the fields.

Youmay add other options and parameters as described in the table of switches below. The order of
the switches in the syntax has no bearing on the output.

For examples of how to form a command, see "Example" on page 22.

-inputFile (-i) string (Required) Specifies the name of the input
file.

-parse (-p) string (Required for text input) Parse format that describes
the fields in a text input file. Valid values are:

x - x point values
y - y point values
z - z point values
i - intensity
r - return number
n - number of returns
d - scan direction
e - edge of flight line
a - scan angle
c - class id
p - source id

lidarinfo Switches

- 21 -



LizardTechMrSID Decode SDKUser Manual

u - user data
t - GPS time
R - red
G - green
B - blue
s - skip this column

Example:
If you have five fields in the order GPS time,
intensity, x, y and z and you only want the time and
the point values, then specify -parse tsxyz,
which skips the second (intensity) column and
correctly labels the other four.

-metadata (-m) Tells lidarinfo to display all metadata.
-bounds (-b) Tells lidarinfo to determine the extents

of the data by reading the data itself
instead of reading min and max values
reported in the header.

-skipHeader (-skip) unsigned
integer

Tells lidarinfo to skip the first n lines of
text input files.

-returns (-r) Decodes the points and displays a
histogram of the number of points per
return value.

-classification (-
c)

Decodes the points and displays a
histogram of the number of points per
classification.

-h (-?) Displays a short usage message.
-help Displays a detailed usage message.
-version (-v) Displays version information.
-verbose (-V) Tells lidarinfo to display more verbose

error messages.
-credits Displays credits and copyrights.

Example

The command

lidarinfo -i LakeRoosevelt_2.sid

returns the following information:

Basic LiDAR Info:
Format: MG4 4.0.0.1
Number of Points: 3144893399
Bounds Min: 408841.780000 5370276.770000 391.350000

- 22 -



Chapter 5: MrSID Decode SDKCommand Line Tools

Bounds Max: 447234.600000 5422959.680000 1188.890000
Scale: 0.001 0.001 0.001
Offset: 408841.780000 5370276.770000 391.350000
Supported Fields: GPSTime X Y Z Intensity ReturnNum NumReturns

ClassId ScanDir ScanAngle UserData SourceId
Spatial Reference: None

- 23 -





Appendix: Company and Product Information
This chapter contains information about LizardTech and its products as well as copyrights,
trademarks and other information pertaining to this LizardTech software.

About LizardTech
Since 1992, LizardTech has delivered state-of-the-art software products for managing and distributing
massive, high-resolution geospatial data such as aerial and satellite imagery and LiDAR data.
LizardTech pioneered theMrSID® technology, a powerful wavelet-based image encoder, viewer, and
file format. LizardTech has offices in Seattle, Denver, London and Tokyo and is a division of Celartem
Technology Inc. For more information about LizardTech, visit www.lizardtech.com.

Other LizardTech Products
Weat LizardTech are glad to have you creating products that support our software. We’re confident
that you will find the LizardTech LiDAR Decode SDK to be everything you need to build support for
MrSID Generation 4 into your products. While you’re “in the shop", explore LizardTech’s other great
products for compressing, managing and distributing geospatial imagery and LiDAR data.

GeoViewer
Efficient Viewing and Exporting of MrSID and JPEG 2000
Layers
GeoViewer is LizardTech's free, standalone application for viewing geospatial imagery, vector
overlays and LiDAR data. GeoViewer enables you to combine, view and export visual layers from
varied sources, such as local repositories, Express Server catalogs, andWMS and JPIP servers.
GeoViewer supports a wide range of input formats and exports to GeoTIFF, PNG and JPEG. It's the
most efficient means of viewingMrSID and JPEG 2000 images.

For more information about GeoViewer visit
http://www.lizardtech.com/downloads/category/#viewers.

ExpressView Browser Plug-in
Fast and Easy Viewing of Large Images
ExpressView™Browser Plug-in enables you to view, navigate and print MrSID and JPEG 2000
imagery in Internet Explorer or Firefox. Like GeoViewer, ExpressView enables you to save a portion
of an image in a number of other image formats. ExpressView Browser Plug-in is quickly
downloaded, easily installed, and free for individual use. It's themost convenient way to view
MrSID and JPEG 2000 imagery over networks!

For more information about ExpressView Browser Plug-in visit
http://www.lizardtech.com/downloads/category/#viewers.

- 25 -

http://www.lizardtech.com/
http://www.lizardtech.com/downloads/category#viewers
http://www.lizardtech.com/downloads/category#viewers


LizardTechMrSID Decode SDKUser Manual

GeoExpress
The Industry’s Best Image Manipulation and
Compression Software
With powerful tools for reprojecting, color balancing, andmosaicking, GeoExpress® software is the
industry’s choice for manipulating and compressing geospatial imagery to industry standard formats.
You can configure Express Server and Spatial Express® software directly from GeoExpress, which
makes it the ideal command center for your storage and distribution workflows.

For more information about GeoExpress visit www.lizardtech.com/products/geo/.

LiDAR Compressor
LiDAR Data Meets the MrSID Format
LizardTech LiDAR Compressor™ software enables you to turn giant point cloud datasets into
efficient MrSID files that retain 100 percent of the raw data at just 25 percent or less of the original file
size (lossless compression). If storage requirements are critical, you can reduce your LiDAR file
sizes by 90 percent or more by choosing a higher compression ratio and letting LiDAR Compressor
select the best way to reach a desired file size (lossy compression). Unlike raw LAS or ASCII data,
LiDAR files compressed toMrSID are easily managed resources you can extract derivatives from
again and again.

For more information about LiDAR Compressor visit www.lizardtech.com/products/lidar/.

Express Server
Image Delivery Software for Geospatial Workflows
LizardTech Express Server software is the best solution for distributing imagery in MrSID or JPEG
2000 format. With Express Server, users on any device access imagery faster, even over low-
bandwidth connections. Express Server is faster, more stable and easier to use than any other
solution for delivering high-resolution raster imagery.

For more information about Express Server visit http://www.lizardtech.com/products/exp/.

- 26 -

http://www.lizardtech.com/products/geo/
http://www.lizardtech.com/products/lidar/
http://www.lizardtech.com/products/exp/


Index

A

Architecture and design 3

B

Buffer management classes 11

C

Classhierarchy 3

Code examples 17

Command line tools 19

lidardecode 19

lidarinfo 21

Contents 1

D

DecompressingMG4 files 19

F

Floating point quantization 4

I

Installation 6

L

Language bindings 2

lidardecode 19

lidarinfo 21

LizardTech 25

M

Metadata class 14

MG4PointReader class 13

- 27 -

O

Other LizardTech products 25

P

PointInfo class 12

PointIterator class 12

PointSource class 9

PointWriter class 10

Programming andmemorymodel 3

Q

Quantization 4

S

Sample code 17

SDK classes

Buffer management 11

metadata 14

MG4PointReader 13

PointIterator 12

PointSource 9

PointWriter 10

support 13

text point readers and writers 13

Specifying a region of interest 3

Support classes 13

SWIGbindings 2

System requirements 5

Android 6

iOS 6



LizardTechMrSID Decode SDKUser Manual

Linux 5

Macintosh 6

Windows 5

T

Technical support 6

before you contact us... 7

Text point readers and writers 13

Thread safety 4

V

Viewing file information 21

- 28 -


	Chapter 1: Introduction
	SDK Contents
	Architecture and Design

	Chapter 2: Getting Started
	System Requirements
	Installation
	Technical Support

	Chapter 3: The SDK Classes
	The PointSource Class
	The PointWriter Class
	The Buffer Management Classes
	The PointInterator Class
	Text Point Readers and Writers
	The MG4PointReader Class
	The Support Classes
	The Metadata Class

	Chapter 4: Code Examples
	Chapter 5: MrSID Decode SDK Command Line Tools
	Decompressing MG4 Files
	Viewing File Information

	Appendix: Company and Product Information
	About LizardTech
	Other LizardTech Products

	Index
	Bookmarks
	SpecifyingROI
	FloatingPointQuantization
	Quantization
	TheChannelInfoClass
	ThePointInfoClass
	TheIOClass
	Examples
	ExampleLidarInfo


